\(\dfrac{x+3}{97}+\dfrac{x+5}{95}+\dfrac{x+9}{91}=\dfrac{x+91}{9}+\dfrac{x+92}{8}+\dfrac{x+61}{39}\)
=> \(\dfrac{x+3}{97}+1+\dfrac{x+5}{95}+1+\dfrac{x+9}{91}+1=\dfrac{x+91}{9}+1+\dfrac{x+92}{8}+1+\dfrac{x+61}{39}+1\)
=> \(\dfrac{x+100}{97}+\dfrac{x+100}{95}+\dfrac{x+100}{91}=\dfrac{x+100}{9}+\dfrac{x+100}{8}+\dfrac{x+100}{39}\)
=> \(\dfrac{x+100}{97}+\dfrac{x+100}{95}+\dfrac{x+100}{91}-\dfrac{x+100}{9}-\dfrac{x+100}{8}-\dfrac{x+100}{39}=0\)
=> \(\left(x+100\right).\left(\dfrac{1}{97}+\dfrac{1}{95}+\dfrac{1}{91}-\dfrac{1}{9}-\dfrac{1}{8}-\dfrac{1}{39}\right)=0\)
=> x = - 100 (do \(\dfrac{1}{97}+\dfrac{1}{95}+\dfrac{1}{91}-\dfrac{1}{9}-\dfrac{1}{8}-\dfrac{1}{39}\ne0\)
Ta có: \(\dfrac{x+3}{97}+\dfrac{x+5}{95}+\dfrac{x+9}{91}=\dfrac{x+91}{9}+\dfrac{x+92}{8}+\dfrac{x+61}{39}\)
\(\Leftrightarrow\dfrac{x+3}{97}+1+\dfrac{x+5}{95}+1+\dfrac{x+9}{91}+1=\dfrac{x+91}{9}+1+\dfrac{x+92}{8}+1+\dfrac{x+61}{39}+1\)
\(\Leftrightarrow\dfrac{x+100}{97}+\dfrac{x+100}{95}+\dfrac{x+100}{91}=\dfrac{x+100}{9}+\dfrac{x+100}{8}+\dfrac{x+100}{39}\)
\(\Leftrightarrow\dfrac{x+100}{97}+\dfrac{x+100}{95}+\dfrac{x+100}{91}-\dfrac{x+100}{9}-\dfrac{x+100}{8}-\dfrac{x+100}{39}=0\)
\(\Leftrightarrow\left(x+100\right)\left(\dfrac{1}{97}+\dfrac{1}{95}+\dfrac{1}{91}-\dfrac{1}{9}-\dfrac{1}{8}-\dfrac{1}{39}\right)=0\)
mà \(\dfrac{1}{97}+\dfrac{1}{95}+\dfrac{1}{91}-\dfrac{1}{9}-\dfrac{1}{8}-\dfrac{1}{39}\ne0\)
nên x+100=0
hay x=-100
Vậy: S={-100}