Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
린 린
Xem chi tiết
Pham Van Hung
14 tháng 12 2018 lúc 22:26

\(\frac{x^6+2x^3y^3+y^6}{x^7-xy^6}=\frac{\left(x^3+y^3\right)^2}{x\left(x^6-y^6\right)}=\frac{\left(x^3+y^3\right)^2}{x\left(x^3-y^3\right)\left(x^3+y^3\right)}=\frac{x^3+y^3}{x\left(x^3-y^3\right)}\)

Thơ Nụ =))
Xem chi tiết

\(\dfrac{2a\cdot x^2-4ax+2a}{5b-5bx^2}\)

\(=\dfrac{2a\left(x^2-2x+1\right)}{5b\left(1-x^2\right)}\)

\(=\dfrac{-2a\left(x-1\right)^2}{5b\left(x-1\right)\left(x+1\right)}=\dfrac{-2a\left(x-1\right)}{5b\left(x+1\right)}\)

\(\dfrac{4x^2-4xy}{5x^3-5x^2y}\)

\(=\dfrac{4x\cdot x-4x\cdot y}{5x^2\cdot x-5x^2\cdot y}\)

\(=\dfrac{4x\left(x-y\right)}{5x^2\left(x-y\right)}=\dfrac{4}{5x}\)

\(\dfrac{\left(x+y\right)^2-z^2}{x+y+z}\)

\(=\dfrac{\left(x+y+z\right)\left(x+y-z\right)}{x+y+z}\)

=x+y-z

\(\dfrac{x^6+2x^3y^3+y^6}{x^7-xy^6}\)

\(=\dfrac{\left(x^3+y^3\right)^2}{x\left(x^6-y^6\right)}\)

\(=\dfrac{\left(x^3+y^3\right)^2}{x\left(x^3+y^3\right)\left(x^3-y^3\right)}=\dfrac{x^3+y^3}{x\left(x^3-y^3\right)}\)

Cô nàng Thiên Yết
Xem chi tiết
Nguyễn Lê Minh
22 tháng 2 2020 lúc 20:04

tôi cũng cung thiên yết nè nhưng lại là cậu bé mà thiên yết hợp với cung gì nhất vậy add friend nha

Khách vãng lai đã xóa
Diệu Anh Hoàng
Xem chi tiết
nguyễn ngọc minh ánh
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
29 tháng 10 2020 lúc 15:48

\(\frac{x^6+2x^3y^3+y^6}{x^7-xy^6}\)( ĐKXĐ tự tìm nhé *)

\(=\frac{\left(x^3\right)^2+2x^3y^3+\left(y^3\right)^2}{x\left(x^6-y^6\right)}\)

\(=\frac{\left(x^3+y^3\right)^2}{x\left[\left(x^3\right)^2-\left(y^3\right)^2\right]}\)

\(=\frac{\left[\left(x+y\right)\left(x^2-xy+y^2\right)\right]^2}{x\left(x^3-y^3\right)\left(x^3+y^3\right)}\)

\(=\frac{\left[\left(x+y\right)\left(x^2-xy+y^2\right)\right]^2}{x\left(x-y\right)\left(x^2+xy+y^2\right)\left(x+y\right)\left(x^2-xy+y^2\right)}\)

\(=\frac{\left(x+y\right)\left(x^2-xy+y^2\right)}{x\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\frac{x^3+y^3}{x\left(x^3-y^3\right)}=\frac{x^3+y^3}{x^4-xy^3}\)

Khách vãng lai đã xóa
Trần Gia Lâm
Xem chi tiết
Bùi Thế Hào
2 tháng 12 2017 lúc 9:16

Điều kiện \(x\ne\pm3;y\ne-2\):

 \(P=\frac{2x+3y}{xy+2x-3y-6}-\frac{6-xy}{xy+2x+3y+6}-\frac{x^2+9}{x^2-9}.\)

=> \(P=\frac{2x+3y}{\left(y+2\right)\left(x-3\right)}-\frac{6-xy}{\left(y+2\right)\left(x+3\right)}-\frac{x^2+9}{\left(x-3\right)\left(x+3\right)}\)

\(P=\frac{\left(2x+3y\right)\left(x+3\right)-\left(6-xy\right)\left(x-3\right)-\left(x^2+9\right)\left(y+2\right)}{\left(y+2\right)\left(x-3\right)\left(x+3\right)}\)

\(P=\frac{2x^2+3xy+6x+9y-6x+x^2y+18-3xy-x^2y-9y-2x^2-18}{\left(y+2\right)\left(x-3\right)\left(x+3\right)}\)

\(P=\frac{0}{\left(y+2\right)\left(x-3\right)\left(x+3\right)}=0\)

=> P=0 (với mọi x khác 3, -3 và y khác -2)

Cỏ dại
Xem chi tiết
Nguyệt
20 tháng 11 2018 lúc 17:24

\(\frac{x^2-5x+6}{x^2-2x}=\frac{x^2-2x-3x+6}{x.\left(x-2\right)}=\frac{x.\left(x-2\right)-3.\left(x-2\right)}{x.\left(x-2\right)}\)

\(=\frac{\left(x-3\right).\left(x-2\right)}{x.\left(x-2\right)}=\frac{x-3}{x}\)

❤  Hoa ❤
20 tháng 11 2018 lúc 17:26

\(a,\frac{x^2-xy+x-y}{x^2-xy-x+y}=\frac{x.\left(x-y\right)-\left(x-y\right)}{x.\left(x+y\right)-\left(x+y\right)}\)

                                      \(=\frac{\left(x-y\right)\left(x-1\right)}{\left(x+y\right)\left(x-1\right)}=\frac{x-y}{x+y}\)

Trinhdiem
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 12 2021 lúc 13:46

b: \(=\dfrac{\left(x+3\right)^2-y^2}{2\left(x-y+3\right)}\)

\(=\dfrac{\left(x+3+y\right)\left(x+3-y\right)}{2\left(x-y+3\right)}=\dfrac{x+y+3}{2}\)

Quỳnh Như
Xem chi tiết
asuna
8 tháng 8 2017 lúc 20:04

a) \(\dfrac{x^6+2x^3y^3+y^6}{x^7-xy^6}=\dfrac{\left(x^3+y^3\right)^2}{x\left(x^6-y^6\right)}\)

\(=\dfrac{\left(x^3+y^3\right)^2}{x\left(x^3-y^3\right)\left(x^3+y^3\right)}\)

\(=\dfrac{x^3+y^3}{x\left(x^3-y^3\right)}\)

b) \(\dfrac{\left(2x^2+2x\right)\left(x-2\right)^2}{\left(x^3-4x\right)\left(x+1\right)}=\dfrac{2x\left(x+1\right)\left(x-2\right)^2}{x\left(x^2-4\right)\left(x+1\right)}\)

\(=\dfrac{2x\left(x+1\right)\left(x-2\right)^2}{x\left(x-2\right)\left(x+2\right)\left(x+1\right)}\)

\(=\dfrac{2\left(x-2\right)}{x+2}\)

c) \(\dfrac{x^3-x^2y+xy^2}{x^3+y^3}=\dfrac{x\left(x^2-xy+y^2\right)}{\left(x+y\right)\left(x^2-xy+y^2\right)}\)

\(=\dfrac{x}{x+y}\)

d) \(\dfrac{a^2+b^2-c^2+2ab}{a^2-b^2+c^2+2ac}=\dfrac{\left(a^2+2ab+b^2\right)-c^2}{\left(a^2+2ac+c^2\right)-b^2}\)

\(=\dfrac{\left(a+b\right)^2-c^2}{\left(a+c\right)^2-b^2}\)

\(=\dfrac{\left(a+b-c\right)\left(a+b+c\right)}{\left(a-b+c\right)\left(a+b+c\right)}\)

\(=\dfrac{a+b-c}{a-b+c}\)

e) \(\dfrac{2x^3-7x^2-12x+45}{3x^3-19x^2+33x-9}=\dfrac{\left(x-3\right)\left(2x^2-x-15\right)}{\left(x-3\right)\left(3x^2-10x+3\right)}\)

\(=\dfrac{2x^2-x-15}{3x^2-10x+3}\)

\(=\dfrac{\left(x-3\right)\left(2x+5\right)}{\left(x-3\right)\left(3x-1\right)}\)

\(=\dfrac{2x+5}{3x-1}\)