cho tam giác abc cân tại a có a =70 độ .hai tia phân giác góc b và c cắt nhau tại i.tính bic
cho tam giác ABCbiết góc b=80 độ,c=40 độ.Hai tia phân giác tại hai góc b và c cắt nhau tại I.Tính góc bic
Ta có \(\widehat{I_1}=\widehat{A_1}+\widehat{B_1}\) và \(\widehat{I_2}=\widehat{A_2}+\widehat{C_1}\)
\(\Rightarrow\widehat{BIC}=\widehat{I_1}+\widehat{I_2}\)
\(=\left(\widehat{A_1}+\widehat{A_2}\right)+\left(\widehat{B_1}+\widehat{C_1}\right)\)
\(=\widehat{BAC}+\dfrac{\widehat{ABC}+\widehat{ACB}}{2}\)
\(=180^o-\left(\widehat{ABC}+\widehat{ACB}\right)+\dfrac{\widehat{ABC}+\widehat{ACB}}{2}\)
\(=180^o-\left(80^o+40^o\right)+\dfrac{80^o+40^o}{2}\)
\(=120^o\)
Vậy \(\widehat{BIC}=120^o\)
B1: Cho tam giác ABC có B=80, C=40 độ. Tia phân giác của góc B cắt AC tại D. Tính ADB.
B2: Cho ta giác ABC có B-C=20 độ. Đường phân giác AD của góc A cắt BC tại D. Tính ADB và ADC.
B3: Cho hình vẽ tính ACB
cho tam giác abc cân tại a.hai tia phân giác góc b và c cắt nhau tại i.tính số đo góc bic
Bạn nguyen hai anh
Tham khảo tại đây nhé :
https://olm.vn/hoi-dap/detail/92950113524.html
Câu hỏi : Cho tam giác ABC cân tại A có A=700.Hai tia phân giác góc B và góc C cắt nhau tại I .Tính số đo góc BIC
Hình tự vẽ
Vì tam giác ABC cân tại A => góc B = góc C
=> \(\widehat{B}=\widehat{C}=\left(180^{\text{o}}-2.70^{\text{o}}\right):2=20^{\text{o}}\)
=> \(\widehat{CBI}=\widehat{BCI}\) = 20 : 2 = 10o
=> Xét tam giác BIC có : \(\widehat{BIC}=\)180o - 10o - 10o = 160o
Hình tự vẽ nhé !
Vì tam giác ABC cân tại A \(\Rightarrow\widehat{B}=\widehat{C}\left(1\right)\)
Xét tam giác ABC có : \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\left(2\right)\) ( tính chất tổng 3 góc 1 tam giác )
Từ \(\left(1\right)\left(2\right)\Rightarrow\widehat{B}=\widehat{C}=\frac{180^0-\widehat{A}}{2}=\frac{180^0-70^0}{2}=55^0\)
Vì tia phân giác góc B và C cắt nhau tại I \(\Rightarrow\widehat{BCI}=\widehat{CBI}=55^0\div2=27,5^0\)
Xét tam giác BIC có \(\widehat{BCI}+\widehat{BIC}+\widehat{CBI}=180^0\) ( t/c tổng 3 góc 1 tam giác )
\(\Rightarrow\widehat{BIC}=180^0-\left(\widehat{BCI}+\widehat{CBI}\right)=180^0-\left(27,5^0+27,5^0\right)=125^0\)
Cho tam giác ABC có góc A=70 độ. Hai tia phân giác của góc ngoài tại B và C cắt nhau ở K. Tính BIC
Cho tam giác ABC cân tại A. Hai tia phân giác của góc B và góc C cắt nhau tại I, biết BIC = 120 độ .Tính số đo góc A.
Cho tam giác ABC có A= 70 độ , tia phân giác của góc B và góc C cắt nhau tại I .Tính số đo của BIC
Cậu tự vẽ hình !
Theo tổng ba goác trong một tam giác , ta có :
\(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}=180^0\)
\(70^0+\widehat{ABC}+\widehat{ACB}=180^0\)
\(\widehat{ABC}+\widehat{ACB}=110^0\)
Vì I là là giao điểm ba đường phân giác nên
BI là phân giác của góc ABC
\(\Rightarrow\widehat{ABI}=\widehat{IBC}=\frac{\widehat{ABC}}{2}\)
CI là phân giác của góc ACB
\(\Rightarrow\widehat{ACI}=\widehat{ICB}=\frac{\widehat{ACB}}{2}\)
Ta có :
\(\widehat{IBC}+\widehat{ICB}=\frac{\widehat{ABC}+\widehat{ACB}}{2}=\frac{100^0}{2}=50^0\)
Và áp dụng tổng 3 góc trong tam giác lên tam giác BIC thì
=> Góc BIC = 1800 - 500 = 1300
Cho tam giác ABC cân tại đỉnh có góc A=100 độ.2 đường phân giác của 2 góc B và Ctrong tam giác ABC cắt nhau tại I.Tính số đo góc BIC.
Mina giúo mk nha! MK đang cần gấp vào ngày mai.
Bạn nào giải nhanh và đúng mk sẽ hậu tạ nha!
ta có tam giác abc cân tại a có số đo là 100 độ
=> B =C = (180-100)/2 = 40 độ
vì hai đường phân giác của hai góc B và C trong tam giác abc cắt nhau tại i
=> CBI= BCI= 40/2 = 20 độ
vì tổng số đo các góc trong tam giác = 180 độ
=> BIC = 180 - CBI-BIC= 180 -(20+20) = 140 (độ)
Cho tam giác abc vuông tại a kẻ AH vuông góc với BC(H thuộc BC).Cho B=55 độ.Tính số đo góc C.Chứng minh ABC=HAC.Tia phân giác góc ngoài của góc B và tia phân giác góc ngoài của góc C cắt nhau tại I.Tính số đo góc BIC.
Cho tam giác ABC có A = 84 độ. Hai tia phân giác của góc B và C cắt nhau tại I. Góc BIC = ?