tìm \(lim\left(3n^4+29n^2-3n-1\right)\)
Tìm các giới hạn sau:
a) \(lim\left(4^n-3^n\right)\)
b) \(lim\left[\left(2^n+1\right)^2-4^n\right]\)
c) \(lim\left(\sqrt{2n^5-3n^2+11}-n^3\right)\)
d) \(lim\left(\sqrt{2n^2+1}-\sqrt{3n^2-1}\right)\)
e) \(lim\sqrt{n^2+3n\sqrt{n}+1}-n\)
\(a=\lim4^n\left(1-\left(\dfrac{3}{4}\right)^n\right)=+\infty.1=+\infty\)
\(b=\lim\left(4^n+2.2^n+1-4^n\right)=\lim2^n\left(2+\dfrac{1}{2^n}\right)=+\infty.2=+\infty\)
\(c=limn^3\left(\sqrt{\dfrac{2}{n}-\dfrac{3}{n^4}+\dfrac{11}{n^6}}-1\right)=+\infty.\left(-1\right)=-\infty\)
\(d=\lim n\left(\sqrt{2+\dfrac{1}{n^2}}-\sqrt{3-\dfrac{1}{n^2}}\right)=+\infty\left(\sqrt{2}-\sqrt{3}\right)=-\infty\)
\(e=\lim\dfrac{3n\sqrt{n}+1}{\sqrt{n^2+3n\sqrt{n}+1}+n}=\lim\dfrac{3\sqrt{n}+\dfrac{1}{n}}{\sqrt{1+\dfrac{3}{\sqrt{n}}+\dfrac{1}{n^2}}+1}=\dfrac{+\infty}{2}=+\infty\)
Tìm các giới hạn sau:
\(a,\left(8n-3n^9+1\right)\)
\(b,lim\left(6n^4-n+1\right)\)
\(c,lim\left(2-3n+7n^2\right)\)
\(a,lim\left(8n-3n^9+1\right)\)
\(=limn^9\left(\dfrac{8}{n^8}-3+\dfrac{1}{n^9}\right)\)
\(=n^9\left(0-3+0\right)=n^9.\left(-3\right)=\)-∞
\(\lim\left(6n^4-n+1\right)=\lim n^4\left(6-\dfrac{1}{n^3}+\dfrac{1}{n^4}\right)=+\infty.6=+\infty\)
\(\lim\left(2-3n+7n^2\right)=\lim n^2\left(\dfrac{2}{n^2}-\dfrac{3}{n}+7\right)=+\infty.7=+\infty\)
Tìm các giới hạn sau:
\(a,lim\left(6n^4-n+1\right)\)
\(b,lim\left(2-3n+7n^2\right)\)
a) lim (6n4 - n + 1)
= lim n4(6 - 1/n3 + 1/n4) = + \(\infty\)
+ lim n4 = + \(\infty\)
+ lim (6 - 1/n3 + 1/n4) = 6
b) lim (2 - 3n + 7n2)
= lim n2(2/n2 - 3/n + 7) = + \(\infty\)
+ lim n2 = + \(\infty\)
+ lim (2/n2 - 3/n + 7) = 7
đặt \(a=lim\dfrac{3n^3-2n+1}{4n^4+2n+1}\). tìm \(lim\dfrac{an^3-\left(a+2\right)n^2+1}{4an^3-n^2+3n+3}\)
\(a=\lim\limits\dfrac{3n^3-2n+1}{4n^4+2n+1}=\lim\limits\dfrac{\dfrac{3n^3}{n^4}-\dfrac{2n}{n^4}+\dfrac{1}{n^4}}{\dfrac{4n^4}{n^4}+\dfrac{2n}{n^4}+\dfrac{1}{n^4}}=0\)
\(\Rightarrow\lim\limits\dfrac{-2n^2+1}{-n^2+3n+3}=\lim\limits\dfrac{-\dfrac{2n^2}{n^2}+\dfrac{1}{n^2}}{-\dfrac{n^2}{n^2}+\dfrac{3n}{n^2}+\dfrac{3}{n^2}}=-\dfrac{2}{-1}=2\)
lim\(\left(5n-\sqrt{25n^2-3n+5}\right)\)
lim\(\dfrac{4n^5-3n^4-2n^3+7n-9}{-5n\left(3n^2-2n+1\right)\left(5-2n^2\right)}\)
\(lim\left(5n-\sqrt{25n^2-3n+5}\right)=lim\dfrac{25n^2-25n^2+3n-5}{5n+\sqrt{25n^2-3n+5}}\)
\(=lim\dfrac{3n-5}{5n+\sqrt{25n^2-3n+5}}=lim\dfrac{3-\dfrac{5}{n}}{5+\sqrt{25-\dfrac{3}{n}+\dfrac{5}{n^2}}}=\dfrac{3-0}{5+\sqrt{25-0+0}}=\dfrac{3}{10}\)
\(lim\dfrac{4n^5-3n^4-2n^3+7n-9}{-5n\left(3n^2-3n+1\right)\left(5-2n^2\right)}=lim\dfrac{\dfrac{4n^5-3n^4-2n^3+7n-9}{n^5}}{\dfrac{-5n}{n}\dfrac{\left(3n^2-3n+1\right)}{n^2}\dfrac{\left(5-2n^2\right)}{n^2}}\)
\(=lim\dfrac{4-\dfrac{3}{n}-\dfrac{2}{n^2}+\dfrac{7}{n^4}-\dfrac{9}{n^5}}{-5.\left(3-\dfrac{2}{n}+\dfrac{1}{n^2}\right).\left(\dfrac{5}{n^2}-2\right)}=\dfrac{4-0-0+0-0}{-5\left(3-0+0\right).\left(0-2\right)}=\dfrac{2}{15}\)
tính các giới hạn sau:
a) lim (3n2+n2-1)
b)lim \(\dfrac{n^3+3n+1}{2n-n^3}\)
c) lim \(\dfrac{-2n^3+3n+1}{n-n^2}\)
d) lim \(\left(n+\sqrt{n^2-2n}\right)\)
e) lim \(\left(2n-3.2^n+1\right)\)
f) lim \(\left(\sqrt{4n^2-n}-2n\right)\)
g) lim \(\left(\sqrt{n^2+3n-1}-\sqrt[3]{n^3-n}\right)\)
a/ Bạn coi lại đề bài, 3n^2 +n^2 thì bằng 4n^2 luôn chứ ko ai cho đề bài như vậy cả
b/ \(\lim\limits\dfrac{\dfrac{n^3}{n^3}+\dfrac{3n}{n^3}+\dfrac{1}{n^3}}{-\dfrac{n^3}{n^3}+\dfrac{2n}{n^3}}=-1\)
c/ \(=\lim\limits\dfrac{-\dfrac{2n^3}{n^2}+\dfrac{3n}{n^2}+\dfrac{1}{n^2}}{-\dfrac{n^2}{n^2}+\dfrac{n}{n^2}}=\lim\limits\dfrac{-2n}{-1}=+\infty\)
d/ \(=\lim\limits\left[n\left(1+1\right)\right]=+\infty\)
e/ \(\lim\limits\left[2^n\left(\dfrac{2n}{2^n}-3+\dfrac{1}{2^n}\right)\right]=\lim\limits\left(-3.2^n\right)=-\infty\)
f/ \(=\lim\limits\dfrac{4n^2-n-4n^2}{\sqrt{4n^2-n}+2n}=\lim\limits\dfrac{-\dfrac{n}{n}}{\sqrt{\dfrac{4n^2}{n^2}-\dfrac{n}{n^2}}+\dfrac{2n}{n}}=-\dfrac{1}{2+2}=-\dfrac{1}{4}\)
g/ \(=\lim\limits\dfrac{n^2+3n-1-n^2}{\sqrt{n^2+3n-1}+n}+\lim\limits\dfrac{n^3-n^3+n}{\sqrt[3]{\left(n^3-n\right)^2}+n.\sqrt[3]{n^3-n}+n^2}\)
\(=\lim\limits\dfrac{\dfrac{3n}{n}-\dfrac{1}{n}}{\sqrt{\dfrac{n^2}{n^2}+\dfrac{3n}{n^2}-\dfrac{1}{n^2}}+\dfrac{n}{n}}+\lim\limits\dfrac{\dfrac{n}{n^2}}{\dfrac{\sqrt[3]{\left(n^3-n\right)^2}}{n^2}+\dfrac{n\sqrt[3]{n^3-n}}{n^2}+\dfrac{n^2}{n^2}}\)
\(=\dfrac{3}{2}+0=\dfrac{3}{2}\)
a) lim \(\left(-3n^3+n^2-1\right)\)
minh le oi ban dao mau so cua ban len cho tu uong roi thay vi tri cua mau thanh n3 +2n
Tìm các giới hạn sau:
a) \(lim\sqrt[3]{-n^3+2n^2-5}\)
b) \(lim\dfrac{1}{\sqrt{n+1}-\sqrt{n}}\)
c) \(lim\left(\dfrac{1}{n+1}-n\right)\)
d) \(lim\left(\dfrac{2n^2-1}{n+1}-2n\right)\)
e) \(lim\dfrac{2n^3+n^2-3n+1}{2-3n}\)
\(a=\lim n\left(\sqrt[3]{-1+\dfrac{2}{n}-\dfrac{5}{n^3}}\right)=+\infty.\left(-1\right)=-\infty\)
\(b=\lim\left(\sqrt{n+1}+\sqrt{n}\right)=+\infty\)
\(c=\lim n\left(\dfrac{1}{n^2+n}-1\right)=+\infty.\left(-1\right)=-\infty\)
\(d=\lim\left(\dfrac{2n^2-1-2n\left(n+1\right)}{n+1}\right)=\lim\left(\dfrac{-1-2n}{n+1}\right)=-2\)
\(e=\lim\dfrac{2n^2+n-3+\dfrac{1}{n}}{\dfrac{2}{n}-3}=\dfrac{+\infty}{-3}=-\infty\)
Tính giới hạn :
L = lim \(\dfrac{\left(n^2+2n\right)\left(2n^3+1\right)\left(4n+5\right)}{\left(n^4-3n-1\right)\left(3n^2-7\right)}\)
Dang này thì cứ chọn số hạng có mũ cao nhất trên tử và mẫu là được. Nó là ngắt vô cùng lớn hay bé gì đấy
\(=lim\dfrac{8n^6}{3n^6}=\dfrac{8}{3}\)
Tìm các giới hạn sau:
a) \(lim\left(\sqrt{4n+1}-2\sqrt{n}\right)\)
b) \(lim\left(\sqrt{n^2+2n}-\sqrt{n^2-2n}-n\right)\)
c) \(lim\left(\sqrt{9^n-3^n}-4^n\right)\)
d) \(lim\left(3n^3+2n^2+n\right)\)
\(a=\lim\dfrac{1}{\sqrt{4n+1}+2\sqrt{n}}=\dfrac{1}{\infty}=0\)
\(b=\lim n\left(\sqrt{1+\dfrac{2}{n}}-\sqrt{1-\dfrac{2}{n}}-1\right)=+\infty.\left(-1\right)=-\infty\)
\(c=\lim4^n\left(\sqrt{\left(\dfrac{9}{16}\right)^n-\left(\dfrac{3}{16}\right)^n}-1\right)=+\infty.\left(-1\right)=-\infty\)
\(d=\lim n^3\left(3+\dfrac{2}{n}+\dfrac{1}{n^2}\right)=+\infty.3=+\infty\)