CMR:9/10!+10/11!+...+999/1000!>1/9!
CMR : 9/10! + 10/11! + 11/12! + ... + 999/1000! < 1/9!
Giúp mình với, ai đúng mình sẽ tick!
\(\frac{9}{10!}+\frac{10}{11!}+...+\frac{999}{1000!}\)
= \(\frac{1}{9!}-\frac{1}{10!}+\frac{1}{10!}-\frac{1}{11!}+...+\frac{1}{999!}-\frac{1}{100!}\)
= \(\frac{1}{9!}-\frac{1}{1000!}\)< \(\frac{1}{9!}\)( dpcm )
A = 9/10! + 9/11! + 9/12! + ...... + 9/1000! < 9/10! + 10/11! + 11/12! + ... + 999/1000! = B
9/10! = 1/9! - 1/10!
10/11! = 1/10! - 1/11!
...
999/1000! = 1/999! - 1/1000!
=> B = 1/9! - 1/1000! < 1/9!
=> A < 1/9! (dpcm)
HÃY CHỨNG MINH :
\(\frac{9}{10!}+\frac{10}{11!}+\frac{11}{12!}+......+\frac{999}{1000}< \frac{1}{9!}\)
\(\frac{9}{10!}+\frac{10}{11!}+...+\frac{999}{1000!}\)
\(=\frac{10-1}{10!}+\frac{11-1}{11!}+...+\frac{1000-1}{1000!}\)
\(=\frac{1}{9!}-\frac{1}{10!}+\frac{1}{10!}-\frac{1}{11!}+...+\frac{1}{999!}-\frac{1}{1000!}\)
\(=\frac{1}{9!}-\frac{1}{1000!}< \frac{1}{9!}\)
đpcm
Tham khảo nhé~
Cho \(A=\dfrac{9}{10!}+\dfrac{10}{11!}+......+\dfrac{999}{1000!}\)
C/m: \(A< \dfrac{1}{9!}\)
Chứng minh B <1/90
B =\(\frac{9}{10!}+\frac{10}{11!}+......+\frac{999}{1000!}\)
So sánh a) a=999^9 + 999^8 và B=1000^ 9
B) a=1+2+2^2+.....+2^10 và B= 2^11-2
1+2+3-4-5-6+7+8+9-10-11-12+....+999+1000+1001-1002-1003-1004+1005+1006
506521 chúc bạn học tốt
CMR: \(\frac{9}{10!}+\frac{9}{11!}+\frac{9}{12!}+...+\frac{9}{1000!}< \frac{1}{9!}\)
Có: \(\frac{9}{10!}=\frac{9}{10!}\)
\(\frac{9}{11!}< \frac{10}{11!}=\frac{11-1}{11!}=\frac{11}{11!}-\frac{1}{11!}=\frac{1}{10!}-\frac{1}{11!}\)
\(\frac{9}{12!}< \frac{11}{12!}=\frac{12-1}{12!}=\frac{12}{12!}-\frac{1}{12!}=\frac{1}{11!}-\frac{1}{12!}\)
............
\(\frac{9}{1000!}< \frac{999}{1000!}=\frac{1000-1}{1000!}=\frac{1000}{1000!}-\frac{1}{1000!}=\frac{1}{999!}-\frac{1}{1000!}\)
\(\Rightarrow\frac{9}{10!}+\frac{9}{11!}+\frac{9}{12!}+...+\frac{1}{1000!}< \frac{9}{10!}+\frac{1}{10!}-\frac{1}{11!}+\frac{1}{11!}-\frac{1}{12!}+...+\frac{1}{999!}-\frac{1}{1000!}\)
\(\Rightarrow\frac{9}{10!}+\frac{9}{11!}+...+\frac{1}{1000!}< \frac{10}{10!}-\frac{1}{1000!}=\frac{1}{9!}-\frac{1}{1000!}< \frac{1}{9!}\)
\(\Rightarrow\frac{9}{10!}+\frac{9}{11!}+...+\frac{9}{1000!}< \frac{1}{9!}\)
\(\Rightarrowđpcm\)
đặt tên là B
B=910!+911!+912!+.............+91000!
Ta thấy :
910!=10−110!=19!−110!
911!<11−111!=110!−111!
91000!<1000−11000!=1999!−11000!
⇒B<19!−110!+110!−111!+............+1999!−11000!
B<19!−11000!
CMR:
\(\frac{9}{10!}+\frac{9}{11!}+...+\frac{9}{1000!}< \frac{1}{9!}\)
\(\frac{9}{10!}+\frac{9}{11!}+...+\frac{9}{1000!}\)
\(=\frac{10-1}{10!}+\frac{11-2}{11!}+...+\frac{1000-991}{1000!}\)
\(=\frac{10}{10!}-\frac{1}{10!}+\frac{11}{11!}-\frac{1}{11!}+...+\frac{1000}{1000!}-\frac{1}{1000!}\)
\(=\frac{1}{9!}-\frac{1}{10!}+\frac{1}{10!}-\frac{1}{11!}+...+\frac{1}{999!}-\frac{1}{1000!}\)
\(=\frac{1}{9!}-\frac{1}{1000!}< \frac{1}{9!}\left(đpcm\right)\)
So sánh: a) a=999^9 + 999^8 và B = 1000^9
B) a= 1+2+2^2+....+2^10 và B=2^11-2
Nhanh lên nha đang gấp
a/
\(A=999^8\left(999+1\right)=1000.999^8\)
\(B=1000.1000^8\)
=> B>A
b/
\(2A=2+2^2+2^3+...+2^{10}+2^{11}\)
\(2A=1+2+2^2+2^3+...+2^{10}+2^{11}-1\)
\(2A=A+2^{11}-1\)
\(A=2^{11}-1\)
\(B=2^{11}-2\)
=> A>B