Bài 2. Tính chu vi của tam giác cân ABC, biết:
a) AB = 2cm, AC = 5cm
b) AB = 16cm, AC = 8cm.
tính chu vi tam giác cân ABC biết
a)AB=8cm, AC=5cm
b) AB=25cm, AC=12cm
( giúp với, mình cần gấp, cảm ơn mn ạaa )
A)vì tam giác ABC là tam giác cân
AB=BC=8
chu vi tam giác ABC=AB+AC+BC=8+5+8=21
B)vì tam giác ABC là tam giác cân
AB=BC=25
chu vi tam giác ABC=AB+AC+BC=25+12+25=62
tính chu vi tam giác cân abc biết:
a, AB = 8cm, AC = 13cm
b, AB = 5cm, BC = 12cm
a) Trường hợp 1: BC=8cm
Chu vi tam giác ACB là:
C=AB+BC+AC=8+13+8=29(cm)
Trường hợp 2: BC=13cm
Chu vi tam giác ABC là:
C=AB+BC+AC=13+13+8=34(cm)
CÂU 11: Cho tam giác ABC có AB = 8cm . AC = 2cm , số đo BC là số nguyên chẳn thì chu vi tam giác ABC là : :
a) 16cm. b) 20cm. c) 18cm. d) một số khác.
Theo bất đẳng thức tam giác và hệ quả ta có:
AB - AC < BC < AB + AC
=> 6<BC<10
theo đề bài=> BC=8
=> chu vi hình Tam giác= 18 cm (chọn câu C)
Bài 1: Tam giác ABC và tam giác MNP đồng dạng, Biết
BC= 10; AC= 12. Tính số đo các góc C, M, N, P và độ dài cạnh NP.
Bài 2: Cho tam giác ABC có AB = 8cm, AC = 16cm. Điểm D thuộc cạnh AB sao cho BD
= 2cm. Điểm E thuộc cạnh AC sao cho CE = 13cm. Chứng minh rằng:
a) Δ AED ω ΔΑBC
b) ABE = ACD
Bài 2:
a: AE=AC-CE=16-13=3(cm)
AD=AB-BD=8-2=6(cm)
Xét ΔAED và ΔABC có
AE/AB=AD/AC
\(\widehat{A}\) chung
Do đó: ΔAED∼ΔABC
b: Ta có: ΔAED∼ΔABC
nên AE/AB=AD/AC
hay AB/AC=AE/AD
Xét ΔABE và ΔACD có
AB/AC=AE/AD
\(\widehat{BAE}\) chung
Do đó: ΔABE∼ΔACD
Suy ra: \(\widehat{ABE}=\widehat{ACD}\)
Bài tập 11: Cho tam giác nhọn ABC có đường cao AH. Kẻ HI, HK lần lượt vuông góc với AB, AC (I thuộc AB, K thuộc AC). Biết AH = 6cm, BH = 2cm, BC = 8cm. a) Tính AB, AC b) Tính HI, HK c) Tính chu vi tứ giác AIHK.
a: Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AB^2=AH^2+HB^2\)
\(\Leftrightarrow AB^2=6^2+2^2=40\)
hay \(AB=2\sqrt{10}\left(cm\right)\)
Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được:
\(AC^2=AH^2+HC^2\)
\(\Leftrightarrow AC^2=6^2+6^2=72\)
hay \(AC=6\sqrt{2}\left(cm\right)\)
Bài 19: Cho tam giác ABC có chu vi 18cm, các đường phân giác BD và CE. Tính các cạnh của tam giác ABC, biết
A. AC = 4cm, BC = 8cm, AB = 6cm
B. AB = 4cm, BC = 6cm, AC = 8cm
C. AB = 4cm, BC = 8cm, AC = 6cm
D. AB = 8cm, BC = 4cm, AC = 6cm
TK
Vậy AB = 4cm, BC = 8cm, AC = 6cm
Đáp án cần chọn là: C
cho tam giác ABC là tam giác cân có AB=18cm; AC=8cm. Tính chu vi củ tam giác
Trường hợp 1: BC=18cm
=>NHận
=>C=AB+BC+AC=36+8=44(cm)
TRường hợp 2: BC=8cm
=>LOại
Bài 1. Cho tam giác ABC và tam giác MNP đồng dạng với nhau theo tỉ số 13 , 𝐴𝐵=3𝑐𝑚;𝑁𝑃=15. Tính các cạnh còn lại của hai tam giác biết chu vi tam giác ABC là 14cm.
Bài 2. Cho tam giác ABC có AB=3cm; AC=7cm và BC=5cm. Biết tam giác MPN đồng dạng với tam giác ABC có cạnh nhỏ nhất là 4,5 cm. Tính các cạnh còn lại của tam giác MPN.
Bài 3. Cho tam giác ABC có AB=5cm; BC=8cm; AC=7cm. Lấy điểm D nằm trên cạnh BC sao cho BD=2cm. Qua D kẻ đường thẳng song song với AB và AC lần lượt cắt AC và AB tại F và E.
a) Chứng minh BDE đồng dạng với DCF
b) Tính chu vi tứ giác AEDF.
Bài 1: Cho tam giác ABC cân tại B, kẻ CH vuông góc AB. Biết AH= 1cm, BH= 4cm. Tính độ dài AC.
Bài 2: Cho tam giác ABC vuông tại A. Cạnh AB= 5cm đường cao AH, BH= 3cm, CH= 8cm. Tính AC.
Bài 3: Cho tam giác ABC vuông tại A, có \(\frac{AB}{BC}=\frac{3}{5}\)và AC= 16cm. Tính độ dài các cạnh AB=BC.
Bài 1: (bạn tự vẽ hình vì hình cũng dễ)
Ta có: AB = AH + BH = 1 + 4 = 5 (cm)
Vì tam giác ABC cân tại B => BA = BC => BC = 5 (cm)
Xét tam giác BCH vuông tại H có:
\(HB^2+CH^2=BC^2\left(pytago\right)\)
\(4^2+CH^2=5^2\)
\(16+CH^2=25\)
\(\Rightarrow CH^2=25-16=9\)
\(\Rightarrow CH=\sqrt{9}=3\left(cm\right)\)
Tới đây xét tiếp pytago với tam giác ACH là ra AC nhé
Bài 2: Sử dụng pytago với tam giác ABH => AH
Sử dụng pytago với ACH => AC