Chứng minh với mọi số nguyên dương \(n\)thì \(A=n^3+20n\)chia hết cho 48
GIÚP MIK VỚI
Chứng minh rằng mọi số nguyên dương n thì
B=3^n+3 - 2^n+3 + 3^n+1 - -2^n+1 chia hết cho 10
giúp mik gấp với
3^n+1 - 2^n+1 nha
gấp quá nên mik nhắn nhầm
Ta có :
B = 3n+3 - 2n+2 + 3n-1 - 2n+1 ( n ∈ N* )
=> B = ( 3n+3 + 3n-1 ) + ( 2n+3 - 2n+1 )
=> B = 3n-1 . ( 34 - 1 ) + 2n+1 . ( 22 + 1 )
=> B = 3n-1 . ( 81 - 1 ) + 2n+1 . ( 4 + 1 )
=> B = 3n-1 . 80 + 2n . 2 . 5
=> B = 3n-1 . 8 . 10 + 2n . 10
=> B = ( 3n-1 . 8 + 2n ) . 10 ⋮ 10 ( do 3n-1 . 8 + 2n ∈ N* với n ∈ N* )
Vậy với mọi số nguyên dương n thì B ⋮ 10
Chứng minh rằng với mọi số nguyên dương n thì:
\(3^{n+2} - 2 ^{n+2} + 3 ^{n} - 2^{n}\) chia hết cho 10
3n+2 -2n+2 +3n -2n
=3n .32 -2n .22 +3n -22
=3n(9+)-2n(4-1)
Vì 3n .10 ⋮10
=> 3n .10- 2n .3⋮10
=>3n +2 -2n+2 +3n -2n ⋮10
Với mỗi số nguyên dương n, gọi u n = 9 n - 1 . Chứng minh rằng với mọi số nguyên dương n thì un luôn chia hết cho 8.
* Ta có u 1 = 9 1 − 1 = 8 chia hết cho 8 (đúng với n = 1).
* Giả sử u k = 9 k − 1 chia hết cho 8.
Ta cần chứng minh u k + 1 = 9 k + 1 − 1 chia hết cho 8.
Thật vậy, ta có u k + 1 = 9 k + 1 − 1 = 9.9 k − 1 = 9 9 k − 1 + 8 = 9 u k + 8 .
Vì 9 u k và 8 đều chia hết cho 8, nên u k + 1 cũng chia hết cho 8.
Vậy với mọi số nguyên dương n thì u n chia hết cho 8.
Chứng minh rằng với mọi số nguyên dương n thì:
A = 3n+3 + 3n+1 + 2n+2 + 2n+1 chia hết cho 6
Từ đề bài ta có A= 3n+1 (32 + 1) + 2n+1 (2 +1) = 3n .3.2.5 + 2n .2.3
=> ĐPCM;
Chứng minh rằng với mọi số nguyên dương n thì : A = 3 n + 3 + 3 n + 1 + 2 n + 2 + 2 n + 1
Chia hết cho 6.
A = 3 n + 3 + 3 n + 1 + 2 n + 2 + 2 n + 1 = 3 n . 27 + 3 + 2 n + 1 . 4 + 2 = 3 n .30 + 2 n .6 = 6. 3 n .5 + 2 n ⋮ 6
chứng minh rằng với mọi số nguyên dương n thì n5 - n chia hết cho 5
\(n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)\)
\(=n\left(n-1\right)\left(n+1\right)\left(n^2-4+5\right)=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)\)
Do \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\) là tích 5 số nguyên liên tiếp nên chia hết cho 5 và \(5n\left(n-1\right)\left(n+1\right)⋮5\forall n\in Z^+\)
\(\Rightarrow n^5-n⋮5\forall n\in Z^+\)
chứng minh rằng với mọi số nguyên dương thì S=(n+1)(n+2)(n+3)..........(n+n) chia hết cho 2^n
chứng minh rằng : P=n^3+20n chia hết với mọi số nguyên n chẵn
(ai giúp tôi bài này với)
n^3 + 20n = n^3 - 4n + 24n
n^3 + 20n = n.(n² - 4) + 24n
n^3 + 20n = n.(n - 2).(n+2) + 24n
n = 2k
=> n^3 + 20n = 8k.(k - 1).(k+1) + 48k
ta có: k.(k-1).(k+1) là tích 3 stn liên tiếp => chia hết cho 2.3 = 6
=> 8k.(k - 1).(k+1) chia hết 8.6 = 48 => n^3 +20n chia hết cho 48.
ta có P=n^3+20n
=n^3-4n+24n
=n(n^2-4)+24n
=n(n-2)(n+2)+24n
vì n là số nguyên chẵn => n=2k
=> n^3-4n+24n=2k(2k-2)(2k+2)+24.2k=8k
Chứng minh rằng: Với mọi số nguyên dương n thì : chia hết cho 10
Bạn ghi lại biểu thức đi bạn
\(3^{n+2}-2^{n+2}+3^n-2^n\)
\(=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)
\(=\left(3^n\cdot9+3^n\right)-\left(4\cdot2^n+2^n\right)\)
\(=10\cdot3^n-5\cdot2^n\)
\(=10\cdot3^n-10\cdot2^{n-1}=10\left(3^n-2^{n-1}\right)⋮10\)