Tìm số nguyên tố \(p\)để \(4p+1\)là số chính phương
GIÚP MIK VỚI
Tìm số nguyên tố P để 4P + 1 là số chính phương
Tìm số nguyên tố p để 4p+1 là số chính phương
Xét p=2,p=2, ta có: 4p+1=9 là số chính phương.
Xét p>2,p>2, vì pp là số nguyên tố nên p=2k+1p=2k+1 (k∈N∗)
Ta có: 4p+1=4(2k+1)+1=8k+54p+1=4(2k+1)+1=8k+5
Mặt khác 4p+14p+1 là một số chính phương lẻ nên chia 88 dư 1.1.
Do đó với p>2 thì 4p+1 không là số chính phương.
Vậy số nguyên tố pp để 4p+1 là số chính phương là 2.
Tìm số nguyên tố p để 4p+1 là số chính phương
Xét p=2, ta có: 4p+1=9 là số chính phương.
Xét p>2, vì p là số nguyên tố nên p=2k+1 (k∈N∗)
Ta có: 4p+1=4(2k+1)+1=8k+5
Mặt khác 4p+1 là một số chính phương lẻ nên chia 8 dư 1.
Do đó với p>2 thì 4p+1 không là số chính phương.
Vậy số nguyên tố p để 4p+1 là số chính phương là 2.
tìm số nguyên tố p để 4p + 1 là số chính phương
Dễ thấy: 4p+1 là số lẻ
Đặt: 4p+1=k^2 (k EN)
vì 4p+1 lẻ nên k lẻ. Đặt: k=2h+1 (hEN)
=> 4p+1=(2h+1)(2h+1)=4h^2+4h+1
=> p=h(h+1)
=> h <2
=> h=1 (h khác 0 vì p là số nguyên tố)
Vậy: p=1(1+1)=2
Vậy: p=2
shitbo đoạn này......? p=h.(h+1) => h<2?????
----here is my "bài làm: :>
ta có: p là snt => chỉ có 2 ước 1 và chính nó. mà h và h+1 là hai số tự nhiên liên tiếp
=> h.(h+1) chia hết cho 2 => p=2
hiểu sao ko vì:
h>= thì p viết đc bằng tích 2 số >1 rồi vậy thì là hợp số rồi đúng ko?
tìm số nguyên tố P để 4P+1 là số chính phương
Đặt 4p + 1 = y2 ( y thuộc Z)
=> 4p = y2 -1
=> 4p = ( y - 1 ) x ( y + 1 )
Vì y - 1 + y + 1 = 2y chẵn => y -1 à y + 1 có cùng tính chẵn lẻ. Mà 4p chẵn => y - 1 và y + 1 là 2 số chẵn liên tiếp
=> ( y - 1 ) x ( y + 1 ) chia hết cho 8 ( vì 2 số tự nhiên liên tiế luôn luôn chia hết cho 8 )
=> 4p chia hết cho 8 => p = 2. Vì p là số nguyên tố.
Vậy p = 2
Giả sử 4P +1 là số chính phương
⇒4P+1=n2(n∈N)
4P+1=n2−12
4P=(n−1)(n+1)
⇒n−1 và n+1 cùng là số chẵn
⇒n−1 và n+1 ∈ Ư(4P) ={1;−1;2;−2;4;−4;P;−P;2P;−2P;4P;−4P}
Ta có bảng :
n-1 | n+1 | n | 4P = (n-1)(n+1) | P | đ/k P là số nguyên tố |
2P | 2 | 1 | 0 | 0 | loại |
P | 4 | 3 | 8 | 2 | thỏa mãn |
2 | 2P | 3 | 4 | 2 | thỏa mãn |
1 | 4P | 2 | 3 | 34 | loại |
Vậy P = 2 là giá trị cần tìm
Tìm số nguyên tố p để 4p + 1 là số chính phương
Cho p là tích của 2020 số nguyên tố đầu tiên. Chứng minh cả p-1 và p+1 đều ko phải số chính phương
Giúp mk vớiiii
Tìm sô nguyên tố p để 4p + là số chính phương
Đặt 4p + 1 = y2 ( y thuộc Z)
=> 4p = y2 -1
=> 4p = ( y - 1 ) x ( y + 1 )
Vì y - 1 + y + 1 = 2y chẵn => y -1 à y + 1 có cùng tính chẵn lẻ. Mà 4p chẵn => y - 1 và y + 1 là 2 số chẵn liên tiếp
=> ( y - 1 ) x ( y + 1 ) chia hết cho 8 ( vì 2 số tự nhiên liên tiế luôn luôn chia hết cho 8 )
=> 4p chia hết cho 8 => p = 2. Vì p là số nguyên tố.
Vậy p = 2
chúc bạn học tốt ~
Tìm số nguyên tố p để 4p+1 là số chính phương
Nhân tiện cho mik hỏi các cậu có bí quyết ôn thi nào hiệu quả ko???( cái này mik hỏi cx liên quan đến học tập nka)
Thank nhìu nka!!!
Nhanh mik tik cho!
Đặt \(4p+1=a^2\)
Dễ thấy 4p+1 lẻ nên a lẻ.Đặt a=2k+1
Khi đó \(4p+1=4k^2+4k+1\)
\(\Rightarrow p=2\left(k+1\right)\)
\(\Rightarrow p=2\) vì \(2\left(k+1\right)\) chẵn
Ta có: \(4p+1=n^2\left(n\inℕ\right)\)
\(4p=n^2-1\)
\(4p=n^2-1^2\)
\(4p=\left(n+1\right)\left(n-1\right)\)
Điều này chỉ xảy ra khi n-1=4 , n+1=p hoặc n+1=4 , n-1=p. Trường hợp thứ nhất cho ta p=6 (không thoả mãn vì 6 là hợp số). Trường hợp thứ hai cho ta p=2 (thoả mãn đề bài). Vậy đáp số của bài toán là p=2.
Có gì ko hiểu hỏi mik nhé!
\(\Rightarrow\orbr{\begin{cases}\hept{\begin{cases}n+1=4\\n-1=p\end{cases}}\\\hept{\begin{cases}n+1=p\\n-1=4\end{cases}}\end{cases}}\)