Cho 2 số nguyên dương x,y thoả mãn (x+2y)^2+x+5y+1 là số chính phương. Chứng minh rằng x=y
Ta có: (2x+3y)2<(2x+3y)2+5x+5y+1<(2x+3y+2)2(2x+3y)2<(2x+3y)2+5x+5y+1<(2x+3y+2)2.
Do đó để (2x+3y)2+5x+5y+1(2x+3y)2+5x+5y+1 là số chính phương thì (2x+3y)2+5x+5y+1=(2x+3y+1)2⇔x=y(2x+3y)2+5x+5y+1=(2x+3y+1)2⇔x=y.
Vậy x = y
-game là dễ
Ta có: (2x+3y)2<(2x+3y)2+5x+5y+1<(2x+3y+2)2(2x+3y)2<(2x+3y)2+5x+5y+1<(2x+3y+2)2.
Do đó để (2x+3y)2+5x+5y+1(2x+3y)2+5x+5y+1 là số chính phương thì (2x+3y)2+5x+5y+1=(2x+3y+1)2⇔x=y(2x+3y)2+5x+5y+1=(2x+3y+1)2⇔x=y.
Vậy x = y
-Tham khảo:
https://hoc24.vn/cau-hoi/cho-cac-so-nguyen-duong-x-y-thoa-man-2x3y25x5y1-la-so-chinh-phuong-chung-minh-rang-xy.333530218330
Cho hai số nguyên dương x, y thỏa mãn x 2 +y 2 +2x(y−1) +2y+1 là số chính phương. Chứng minh rằng x = y
Xét \(P=x^2+y^2+2x\left(y-1\right)+2y+1\)
\(P=x^2+y^2+2xy-2x+2y+1\)
+) Nếu \(y>x\) thì \(2y-2x+1>0\). Do đó \(P>\left(x+y\right)^2\). Hơn nữa:
\(P< x^2+y^2+1+2xy+2x+2y\) \(=\left(x+y+1\right)^2\),
suy ra \(\left(x+y\right)^2< P< \left(x+y+1\right)^2\), vô lí vì P là SCP.
+) Nếu \(x>y\) thì \(2y-2x+1< 0\) nên \(P< \left(x+y\right)^2\)
Hơn nữa \(P>x^2+y^2+1+2xy-2x-2y\) \(=\left(x+y-1\right)^2\)
Suy ra \(\left(x+y-1\right)^2< P< \left(x+y\right)^2\), vô lí vì P là SCP.
Vậy \(x=y\) (đpcm)
(Cơ mà nếu thay \(x=y\) vào P thì \(P=4x^2+1\) lại không phải là SCP đâu)
Chứng Minh Rằng: Nếu x,y nguyên thỏa mãn hệ thức 2x2+x=3y2+y thì x-y, 2x+2y+1 và 3x+3y+1 là các số chính phương.
=> 2x2 - 2y2 + x - y = y2
=> 2(x2 - y2) + (x - y) = y2
=> 2.(x - y).(x+y) + (x - y) = y2
=> (x - y).(2x+ 2y + 1) = y2 là số chính phương (*)
Nhận xét: x - y và 2x + 2y + 1 nguyên tố cùng nhau (**) vì:
Gọi d = ƯCLN(x - y; 2x + 2y + 1)
=> x- y ; 2x + 2y + 1 chia hết cho d
=> y2 = (x - y).(2x+ 2y+ 1) chia hết cho d2 => y chia hết cho d
và (2x+ 2y+ 1) - 2(x - y) chia hết cho d => 4y + 1 chia hết cho d
=> 1 chia hết cho d hay d = 1
Từ (*)(**) => x - y và 2x + 2y + 1 là số chính phương
Tương tự: có 3y2 - 3x2 + y - x = -x2
=> 3(x2 - y2) + (x - y) = x2
=> 3(x - y)(x+y) + (x - y) = x2
=> (x - y).(3x+ 3y + 1) = x2 là số chính phương
Mà x - y là số chính phương nên 3x + 3y + 1 là số chonhs phương
=> ĐPCM
=> 2x2 - 2y2 + x - y = y2
=> 2(x2 - y2) + (x - y) = y2
=> 2.(x - y).(x+y) + (x - y) = y2
=> (x - y).(2x+ 2y + 1) = y2 là số chính phương (*)
Nhận xét: x - y và 2x + 2y + 1 nguyên tố cùng nhau (**) vì:
Gọi d = ƯCLN(x - y; 2x + 2y + 1)
=> x- y ; 2x + 2y + 1 chia hết cho d
=> y2 = (x - y).(2x+ 2y+ 1) chia hết cho d2 => y chia hết cho d
và (2x+ 2y+ 1) - 2(x - y) chia hết cho d => 4y + 1 chia hết cho d
=> 1 chia hết cho d hay d = 1
Từ (*)(**) => x - y và 2x + 2y + 1 là số chính phương
Tương tự: có 3y2 - 3x2 + y - x = -x2
=> 3(x2 - y2) + (x - y) = x2
=> 3(x - y)(x+y) + (x - y) = x2
=> (x - y).(3x+ 3y + 1) = x2 là số chính phương
Mà x - y là số chính phương nên 3x + 3y + 1 là số chonhs phương
=> ĐPCM
=> 2x2 - 2y2 + x - y = y2
=> 2(x2 - y2) + (x - y) = y2
=> 2.(x - y).(x+y) + (x - y) = y2
=> (x - y).(2x+ 2y + 1) = y2 là số chính phương (*)
Nhận xét: x - y và 2x + 2y + 1 nguyên tố cùng nhau (**) vì:
Gọi d = ƯCLN(x - y; 2x + 2y + 1)
=> x- y ; 2x + 2y + 1 chia hết cho d
=> y2 = (x - y).(2x+ 2y+ 1) chia hết cho d2 => y chia hết cho d
và (2x+ 2y+ 1) - 2(x - y) chia hết cho d => 4y + 1 chia hết cho d
=> 1 chia hết cho d hay d = 1
Từ (*)(**) => x - y và 2x + 2y + 1 là số chính phương
Tương tự: có 3y2 - 3x2 + y - x = -x2
=> 3(x2 - y2) + (x - y) = x2
=> 3(x - y)(x+y) + (x - y) = x2
=> (x - y).(3x+ 3y + 1) = x2 là số chính phương
Mà x - y là số chính phương nên 3x + 3y + 1 là số chonhs phương
=> ĐPCM
bấm đúng cho tớ nhé các bạn
chứng minh rằng nếu x,y nguyên thỏa mãn hệ thức 2x2+x=3y2+ỵ thì x-y , 2x-2y+1 , 3x-3y+2 là các số chính phương
=> 2x2 - 2y2 + x - y = y2
=> 2(x2 - y2) + (x - y) = y2
=> 2.(x - y).(x+y) + (x - y) = y2
=> (x - y).(2x+ 2y + 1) = y2 là số chính phương (*)
Nhận xét: x - y và 2x + 2y + 1 nguyên tố cùng nhau (**) vì:
Gọi d = ƯCLN(x - y; 2x + 2y + 1)
=> x- y ; 2x + 2y + 1 chia hết cho d
=> y2 = (x - y).(2x+ 2y+ 1) chia hết cho d2 => y chia hết cho d
và (2x+ 2y+ 1) - 2(x - y) chia hết cho d => 4y + 1 chia hết cho d
=> 1 chia hết cho d hay d = 1
Từ (*)(**) => x - y và 2x + 2y + 1 là số chính phương
Tương tự: có 3y2 - 3x2 + y - x = -x2
=> 3(x2 - y2) + (x - y) = x2
=> 3(x - y)(x+y) + (x - y) = x2
=> (x - y).(3x+ 3y + 1) = x2 là số chính phương
Mà x - y là số chính phương nên 3x + 3y + 1 là số chính phương
=> ĐPCM
cho x,y,z là các số thực dương thỏa mãn \(x^2+y^2+z^2\ge\dfrac{1}{3}\)
chứng minh \(\dfrac{x^3}{2x+3y+5z}+\dfrac{y^3}{2y+3z+5x}+\dfrac{z^3}{2z+3x+5y}\ge\dfrac{1}{30}\)
đặt\(A=\dfrac{x^3}{2x+3y+5z}+\dfrac{y^3}{2y+3z+5x}+\dfrac{z^3}{2z+3x+5y}\)
\(=>A=\dfrac{x^4}{2x^2+3xy+5xz}+\dfrac{y^4}{2y^2+3yz+5xy}+\dfrac{z^4}{2z^2+3xz+5yz}\)
BBDT AM-GM
\(=>A\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{2\left(x^2+y^2+z^2\right)+8\left(xy+yz+xz\right)}\)
theo BDT AM -GM ta chứng minh được \(xy+yz+xz\le x^2+y^2+z^2\)
vì \(x^2+y^2\ge2xy\)
\(y^2+z^2\ge2yz\)
\(x^2+z^2\ge2xz\)
\(=>2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+xz\right)< =>xy+yz+xz\le x^2+y^2+z^2\)
\(=>2\left(x^2+y^2+z^2\right)+8\left(xy+yz+xz\right)\le10\left(x^2+y^2+z^2\right)\)
\(=>A\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{10\left(x^2+y^2+z^2\right)}=\dfrac{x^2+y^2+z^2}{10}=\dfrac{\dfrac{1}{3}}{10}=\dfrac{1}{30}\left(đpcm\right)\)
dấu"=" xảy ra<=>x=y=z=1/3
Cho x,y,z thoã mãn (z-1)x-y=1 và x+2y=2
Chứng minh rằng \(\left(2x-y\right)\left(z^2-z+1\right)\)=7 tìm tất cả các số nguyên thoã mãn phương trình trên
CHO CÁC SỐ NGUYÊN DƯƠNG X Y THỎA MÃN ĐIỀU KIỆN X²+y²+2xy-4x-2y+1=0.Chứng minh rằng x là số chẵn và x:2 là số chính phương
Ta có: x2+y2+2xy-4x-2y+1=0
⇔(x2+y2+2xy-2x-2y+1)-2x=0
⇔(x+y-1)2=2x
Mà (x+y-1)2 là số chính phương
⇒2x là số chính phương
⇒2x chia 4 dư 0 hoặc 1
Mà 2x là số chẵn
⇒2x chia hết cho 4
⇒x chia hết cho 2
⇒x là số chẵn(đpcm)
Lại có:(x+y-1)2=2x
⇒\(\dfrac{\left(x+y-1\right)^2}{2}\)=x
⇒\(\dfrac{\left(x+y-1\right)^2}{2}\): 2=x:2
⇒\(\dfrac{\left(x+y-1\right)^2}{2}\). \(\dfrac{1}{2}\) =x:2
⇒\(\dfrac{\left(x+y-1\right)^2}{4}\)=x:2
⇒(\(\dfrac{x+y-1}{2}\))2=x:2
Mà \(\left(\dfrac{x+y-1}{2}\right)^2\) là số chính phương
⇒x:2 là số chính phương (đpcm)
Bài 1. Cho x, y là hai số nguyên dương thỏa mãn x2 + 2y là một số chính phương. Chứng minh rằng x2 + y là tổng của hai số chính phương
Bài 2. Cho a, b là hai số nguyên. Chứng minh rằng 2a2+2b2 là tổng của hai số chính phương
Bài 2:
Ta có: 2a2+2b2=(a2+2ab+b2)+(a2-2ab+b2)
=(a+b)2+(a-b)2 là tổng 2 số chính phương
⇒2a2+2b2 là tổng của 2 số chính phương(đpcm)
Cho các số nguyên dương thỏa mãn điều kiện x²+y²+2xy-4x-2y+1=0. Chứng minh rằng x là số chắn và x:2 là số chính phương