Biểu thức: \(\frac{\left(\frac{1}{9}\right)^n-\left(\frac{1}{3}\right)^n}{\left(\frac{1}{3}\right)^n}\) bằng biểu thức nào dưới đây:
A. \(\left(\frac{1}{3}\right)^n-1\)
B. \(\left(\frac{1}{3}\right)^n+1\)
C. 5
D. 2
giúp mình với nhanh nha, mai nộp rồi!!!
1. Tính giá trị của biểu thức:
\(A=\left(\frac{m-n}{p}+\frac{n-p}{m}+\frac{p-m}{n}\right)\left(\frac{p}{m-n}+\frac{m}{n-p}+\frac{n}{p-m}\right)\)
biết \(m+n+p=0\)
2. Tính:
a) \(A=\frac{2^3+1}{2^3-1}.\frac{3^3+1}{3^3-1}.\frac{4^3+1}{4^3-1}...\frac{10^3+1}{10^3-1}\)
b) \(B=\frac{\left(1+\frac{1}{4}\right)\left(3^4+\frac{1}{4}\right)\left(5^4+\frac{1}{4}\right)...\left(9^4+\frac{1}{4}\right)}{\left(2^4+\frac{1}{4}\right)\left(4^4+\frac{1}{4}\right)\left(6^4+\frac{1}{4}\right)...\left(10^4+\frac{1}{4}\right)}\)
bài 1) Đặt \(B=\frac{m-n}{p}+\frac{n-p}{m}+\frac{p-m}{n}\)
Ta có: \(A=B.\left(\frac{p}{m-n}+\frac{m}{n-p}+\frac{n}{p-m}\right)=B.\frac{p}{m-n}+B.\frac{m}{n-p}+B.\frac{n}{p-m}\)
\(B.\frac{p}{m-n}=\left(\frac{m-n}{p}+\frac{n-p}{m}+\frac{p-m}{n}\right).\frac{p}{m-n}=\frac{m-n}{p}.\frac{p}{m-n}+\frac{n-p}{m}.\frac{p}{m-n}+\frac{p-m}{n}.\frac{p}{m-n}\)
\(=1+\frac{n-p}{m}.\frac{p}{m-n}+\frac{p-m}{n}.\frac{p}{m-n}=1+\frac{p}{m-n}.\left(\frac{n-p}{m}+\frac{p-m}{n}\right)\)
\(=1+\frac{p}{m-n}.\left[\frac{\left(n-p\right).n}{mn}+\frac{\left(p-m\right).m}{mn}\right]=1+\frac{p}{m-n}.\frac{n^2-np+pm-m^2}{mn}\)
\(=1+\frac{p}{m-n}.\frac{\left(m-n\right).\left(p-m-n\right)}{mn}=1+\frac{p.\left(m-n\right).\left(p-m-n\right)}{\left(m-n\right).mn}=1+\frac{p.\left(p-m-n\right)}{mn}\)
\(=1+\frac{p^2-pm-pn}{mn}=1+\frac{p^2-p.\left(m+n\right)}{mn}\)
Vì m+n+p=0=>m+n=-p
\(=>B.\frac{p}{m-n}=1+\frac{p^2-p.\left(-p\right)}{mn}=1+\frac{2p^2}{mn}=1+\frac{2p^3}{mnp}\left(1\right)\)
\(B.\frac{m}{n-p}=\left(\frac{m-n}{p}+\frac{n-p}{m}+\frac{p-m}{n}\right).\frac{m}{n-p}=\frac{m-n}{p}.\frac{m}{n-p}+\frac{n-p}{m}.\frac{m}{n-p}+\frac{p-m}{n}.\frac{m}{n-p}\)
\(=1+\frac{m-n}{p}.\frac{m}{n-p}+\frac{p-m}{n}.\frac{m}{n-p}=1+\frac{m}{n-p}.\left(\frac{m-n}{p}+\frac{p-m}{n}\right)\)
\(=1+\frac{m}{n-p}.\left[\frac{\left(m-n\right).n}{np}+\frac{\left(p-m\right).p}{np}\right]=1+\frac{m}{n-p}.\frac{mn-n^2+p^2-mp}{np}\)
\(=1+\frac{m}{n-p}.\frac{\left(n-p\right).\left(m-n-p\right)}{np}=1+\frac{m.\left(n-p\right).\left(m-n-p\right)}{\left(n-p\right).np}=1+\frac{m.\left(m-n-p\right)}{np}\)
\(=1+\frac{m^2-mn-mp}{np}=1+\frac{m^2-m\left(n+p\right)}{np}=1+\frac{m^2-m.\left(-m\right)}{np}=1+\frac{2m^2}{np}=1+\frac{2m^3}{mnp}\left(2\right)\) (vì m+n+p=0=>n+p=-m)
\(B.\frac{n}{p-m}=\left(\frac{m-n}{p}+\frac{n-p}{m}+\frac{p-m}{n}\right).\frac{n}{p-m}=\frac{m-n}{p}.\frac{n}{p-m}+\frac{n-p}{m}.\frac{n}{p-m}+\frac{p-m}{n}.\frac{n}{p-m}\)
\(=1+\frac{m-n}{p}.\frac{n}{p-m}+\frac{n-p}{m}.\frac{n}{p-m}=1+\frac{n}{p-m}.\left(\frac{m-n}{p}+\frac{n-p}{m}\right)\)
\(=1+\frac{n}{p-m}.\left[\frac{\left(m-n\right).m}{pm}+\frac{\left(n-p\right).p}{pm}\right]=1+\frac{n}{p-m}.\frac{m^2-mn+np-p^2}{pm}\)
\(=1+\frac{n}{p-m}.\frac{\left(p-m\right).\left(n-p-m\right)}{pm}=1+\frac{n.\left(p-m\right).\left(n-p-m\right)}{\left(p-m\right).pm}=1+\frac{n.\left(n-p-m\right)}{pm}\)
\(=1+\frac{n^2-np-mn}{pm}=1+\frac{n^2-n\left(p+m\right)}{pm}=1+\frac{n^2-n.\left(-n\right)}{pm}=1+\frac{2n^2}{pm}=1+\frac{2n^3}{mnp}\left(3\right)\) (vì m+n+p=0=>p+m=-n)
Từ (1),(2),(3) suy ra :
\(A=B.\frac{p}{m-n}+B.\frac{m}{n-p}+B.\frac{n}{p-m}=\left(1+\frac{2p^3}{mnp}\right)+\left(1+\frac{2m^3}{mnp}\right)+\left(1+\frac{2n^3}{mnp}\right)\)
\(=3+\frac{2p^3}{mnp}+\frac{2m^3}{mnp}+\frac{2n^3}{mnp}=3+\frac{2.\left(m^3+n^3+p^3\right)}{mnp}\)
*Tới đây để tính được m3+n3+p3,ta cần CM được bài toán phụ sau:
Đề: Cho m+n+p=0.CMR: \(m^3+n^3+p^3=3mnp\)
Từ m+n+p=0=>m+n=-p
Ta có: \(m^3+n^3+p^3=\left(m+n\right)^3-3m^2n-3mn^2+p^3=-p^3-3mn\left(m+n\right)+p^3\)
\(=-3mn\left(m+n\right)=-3mn.\left(-p\right)=3mnp\)
Vậy ta đã CM được bài toán phụ
*Trở lại bài toán chính: \(A=3+\frac{2.3mnp}{mnp}=3+\frac{6mnp}{mnp}=3+6=9\)
Vậy A=9
bài 2)
a)Nhận thấy các thừa số của A đều có dạng tổng quát sau:
\(n^3+1=n^3+1^3=\left(n+1\right)\left(n^2-n+1\right)=\left(n+1\right).\left(n^2-n+\frac{1}{4}+\frac{3}{4}\right)\)
\(=\left(n+1\right).\left(n^2-2.n.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\right)=\left(n+1\right).\left[\left(n-\frac{1}{2}\right)^2+\frac{3}{4}\right]=\left(n+1\right).\left[\left(n-0,5\right)^2+0,75\right]\)
\(n^3-1=n^3-1^3=\left(n-1\right)\left(n^2+n+1\right)=\left(n-1\right).\left(n^2+n+\frac{1}{4}+\frac{3}{4}\right)\)
\(=\left(n-1\right).\left(n^2+2.n.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\right)=\left(n-1\right).\left[\left(n+\frac{1}{2}\right)^2+\frac{3}{4}\right]=\left(n-1\right).\left[\left(n+0,5\right)^2+0,75\right]\)
suy ra \(\frac{n^3+1}{n^3-1}=\frac{\left(n+1\right).\left[\left(n-0,5\right)^2+0,75\right]}{\left(n-1\right).\left[\left(n+0,5\right)^2+0,75\right]}\)
Do đó: \(\frac{2^3+1}{2^3-1}=\frac{\left(2+1\right).\left[\left(2-0,5\right)^2+0,75\right]}{\left(2-1\right).\left[\left(2+0,5\right)^2+0,75\right]}=\frac{3.\left(1,5^2+0,75\right)}{1.\left(2,5^2+0,75\right)}\)
\(\frac{3^3+1}{3^3-1}=\frac{\left(3+1\right).\left[\left(3-0,5\right)^2+0,75\right]}{\left(3-1\right).\left[\left(3+0,5\right)^2+0,75\right]}=\frac{4.\left(2,5^2+0,75\right)}{2.\left(3,5^2+0,75\right)}\)
...........................
\(\frac{10^3+1}{10^3-1}=\frac{\left(10+1\right).\left[\left(10-0,5\right)^2+0,75\right]}{\left(10-1\right).\left[\left(10+0,5\right)^2+0,75\right]}=\frac{11.\left(9,5^2+0,75\right)}{9.\left(10,5^2+0,75\right)}\)
\(=>A=\frac{3\left(1,5^2+0,75\right).4\left(2,5^2+0,75\right)........11.\left(9,5^2+0,75\right)}{1\left(2,5^2+0,75\right).2.\left(3,5^2+0,75\right)........9\left(10,5^2+0,75\right)}=\frac{3.4........11}{1.2......9}.\frac{1,5^2+0,75}{10,5^2+0,75}\)
\(=\frac{10.11}{2}.\frac{1}{37}=\frac{2036}{37}\)
Vậy A=2036/37
b) có thể ở chỗ 1+1/4 bn nhầm,phải là \(1^4+\frac{1}{4}\) ,mà chắc cũng chẳng sao,vì 14=1 mà
Nhận thấy các thừa số của B có dạng tổng quát:
\(n^4+\frac{1}{4}=n^4+n^2+\frac{1}{4}-n^2=\left(n^2\right)^2+2.n^2.\frac{1}{2}+\frac{1}{4}-n^2=\left(n^2+\frac{1}{2}\right)^2-n^2\)
\(=\left(n^2+\frac{1}{2}-n\right)\left(n^2+\frac{1}{2}+n\right)\)
\(B=\frac{\left(1^2+\frac{1}{2}-1\right).\left(1^2+\frac{1}{2}+1\right).\left(3^2+\frac{1}{2}+3\right).\left(3^2+\frac{1}{2}-3\right)..........\left(9^2+\frac{1}{2}-9\right).\left(9^2+\frac{1}{2}+9\right)}{\left(2^2+\frac{1}{2}-2\right).\left(2^2+\frac{1}{2}+2\right).\left(4^2+\frac{1}{2}-4\right).\left(4^2+\frac{1}{2}+4\right)......\left(10^2+\frac{1}{2}-10\right).\left(10^2+\frac{1}{2}+10\right)}\)
Mặt khác,ta cũng có: \(\left(a+1\right)^2-\left(a+1\right)+\frac{1}{2}=a^2+2a+1-a-1+\frac{1}{2}=a^2+a+\frac{1}{2}\)
Suy ra \(B=\frac{1^2+\frac{1}{2}-1}{10^2+\frac{1}{2}+10}=\frac{1}{221}\)
Vậy B=1/221
Cho biểu thức \(B=\frac{1}{3}+\left(\frac{1}{3}\right)^2+\left(\frac{1}{3}\right)^3+...+\left(\frac{1}{3}\right)^{2013}\)
Số tự nhiên n thỏa mãn \(1-2B=\left(\frac{1}{3}\right)^n\) là ?
\(A=\left(1-\frac{1}{1+2}\right)\left(1-\frac{1}{1+2+3}\right)\left(1-\frac{1}{1+2+3+4}\right)...\left(1-\frac{1}{1+2+3+4+...+N}\right) \)) là tích của n-1 thừa số và biểu thức B=\(\frac{n+2}{n}\) . Tính \(\frac{A}{B}\)
Rút gọn biểu thức sau:
\(A=\left(1+\frac{1}{3}\right).\left(1+\frac{1}{8}\right).\left(1+\frac{1}{15}\right)...\left(1+\frac{1}{n^2+2n}\right)\) (n nguyên dương)
\(A=\left(1+\frac{1}{3}\right).\left(1+\frac{1}{8}\right).\left(1+\frac{1}{15}\right)...\left(1+\frac{1}{n^2+2n}\right)\)
\(A=\frac{3+1}{3}.\frac{8+1}{8}.\frac{15+1}{15}...\frac{n^2+2n+1}{n^2+2n}\)
\(A=\frac{4}{3}.\frac{9}{8}.\frac{16}{15}...\frac{\left(n+1\right)^2}{n^2+2n}\)
\(A=\frac{2.2}{1.3}.\frac{3.3}{2.4}.\frac{4.4}{3.5}...\frac{\left(n+1\right)^2}{n.\left(n+2\right)}\)
\(A=\frac{2.3.4...\left(n+1\right)}{1.2.3...n}.\frac{2.3.4...\left(n+1\right)}{3.4.5...\left(n+2\right)}\)
\(A=\left(n+1\right).\frac{2}{n+2}=\frac{2.\left(n+1\right)}{n+2}\)
Ta có : \(1+\frac{1}{k^2+2k}=\frac{k^2+2k+1}{k^2+2k}=\frac{\left(k+1\right)^2}{k\left(k+2\right)}\) với k thuộc N*
Áp dụng với k = 1,2,3,....,n được :
\(A=\left(1+\frac{1}{3}\right)\left(1+\frac{1}{8}\right)\left(1+\frac{1}{15}\right)...\left(1+\frac{1}{n^2+2n}\right)\)
\(=\frac{\left(1+1\right)^2}{1.\left(1+2\right)}.\frac{\left(2+1\right)^2}{2.\left(2+2\right)}.\frac{\left(3+1\right)^2}{3.\left(3+2\right)}...\frac{\left(n+1\right)^2}{n.\left(n+2\right)}\)
\(=\frac{\left[2.3.4...\left(n+1\right)\right]^2}{1.2.3...n.3.4.5...\left(n+2\right)}=\frac{\left[\left(n+1\right)!\right]^2}{n!.\frac{\left(n+2\right)!}{2}}\)
Thu gọn các đơn thức trong biểu thức đại số.
a) \(C=\frac{7}{9}x^3y^2.\left(\frac{6}{11}axy^3\right)+\left(-5bx^2y^4\right).\left(\frac{-1}{2}axz\right)+ax\left(x^2y\right)^3\)
b) \(D=\frac{\left(3x^4y^3\right)^2.\left(\frac{1}{6}x^2y\right)+\left(8x^{n-9}\right).\left(-2x^{9-n}\right)}{15x^3y^2\left(0,4ax^2y^2z^2\right)}\)
Rút gọn biểu thức
\(A=\left(1-\frac{1}{2^2}\right).\left(1-\frac{1}{3^2}\right).\left(1-\frac{1}{4^2}\right)...\left(1-\frac{1}{n^2}\right)\)
\(A=\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right)...\left(1-\frac{1}{n^2}\right)\)
\(=\left(\frac{2^2-1}{2^2}\right)\left(\frac{3^2-1}{3^2}\right)\left(\frac{4^2-1}{4^2}\right)...\left(\frac{n^2-1}{n^2}\right)\)
\(=\text{[}\frac{\left(2-1\right)\left(2+1\right)}{2^2}\text{]}.\text{[}\frac{\left(3-1\right)\left(3+1\right)}{3^2}\text{]}.\text{[}\frac{\left(4-1\right)\left(4+1\right)}{4^2}\text{]}...\text{[}\frac{\left(n-1\right)\left(n+1\right)}{n^2}\text{]}\)
\(=\left(\frac{1.3}{2^2}\right).\left(\frac{2.4}{3^2}\right).\left(\frac{3.5}{4^2}\right)...\text{[}\frac{\left(n-1\right)\left(n+1\right)}{n^2}\text{]}\)
\(=\frac{\text{[}1.2.3...\left(n-1\right)\text{]}.\text{[}3.4.5...\left(n+1\right)\text{]}}{\text{[}2.3.4...n\text{]}.\text{[}2.3.4...n\text{]}}\)
\(=\frac{1}{n}.\frac{n+1}{2}\)
\(=\frac{n+1}{2n}\)
Tính biểu thức sau:
\(S=\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+...+\frac{1}{n\left(n+1\right)\left(n+2\right)\left(n+3\right)}\)
Biến đổi phân số ở dạng tổng quát:
\(\frac{1}{n\left(n+1\right)\left(n+2\right)\left(n+3\right)}=\frac{3}{3n\left(n+1\right)\left(n+2\right)\left(n+3\right)}=\frac{3+n-n}{3n\left(n+1\right)\left(n+2\right)\left(n+3\right)}\)
\(=\frac{1}{3}\left[\frac{n+3}{n\left(n+1\right)\left(n+2\right)\left(n+3\right)}-\frac{n}{n\left(n+1\right)\left(n+2\right)\left(n+2\right)}\right]\)
=\(\frac{1}{3}\left[\frac{1}{n\left(n+1\right)\left(n+2\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)\left(n+3\right)}\right]\)
Áp dụng kết quả vào bài, ta được:
\(\frac{1}{1.2.3.4}=\frac{1}{3}\left[\frac{1}{1.2.3}-\frac{1}{2.3.4}\right],\frac{1}{2.3.4.5}=\frac{1}{3}\left[\frac{1}{2.3.4}-\frac{1}{3.4.5}\right]\),...
\(\frac{1}{n\left(n+1\right)\left(n+2\right)\left(n+3\right)}=\frac{1}{3}\left[\frac{1}{n\left(n+1\right)\left(n+2\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)\left(n+3\right)}\right]\)
Cộng từng vế, ta được:
\(S=\frac{1}{3}\left[\frac{1}{1.2.3}-\frac{1}{\left(n+1\right)\left(n+2\right)\left(n+3\right)}\right].\)
Bài 1: \(\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right)....\left(1-\frac{1}{n^2}\right)\)với n thuộc N; n lớn hơn hoặc bằng 2
Rút gọn thành biểu thức trên
A= \(\left(\frac{3}{4}\right)\left(\frac{8}{9}\right)\left(\frac{15}{16}\right)......\left(\frac{\left(n-1\right)\left(n+1\right)}{n.n}\right)\)
\(=\frac{3.8.15....\left(n-1\right)\left(n+1\right)}{\left(2.3.4......n\right)\left(2.3.4.......n\right)}=\frac{1.3.2.4.3.5.......\left(n-1\right)\left(n+1\right)}{\left(2.3.4.....n\right)\left(2.3.4..................n\right)}=\frac{\left(1.2.3.......\left(n-1\right)\right)\left(3.4.5........\left(n+1\right)\right)}{\left(2.3.4.....n\right)\left(2.3.4...........n\right)}\)
\(=\frac{1.\left(n+1\right)}{n.2}=\frac{n+1}{2n}\)
mình chỉ tick cho những người giải thôi, không chấp nhận trường hợp xin tick, và cấm tình trạng spam bậy. Nếu ai giải được thì mình tick, nếu ai không giải, xin tick, hay spam để kiếm điểm hỏi đáp thì miễn.
Cho biểu thức: \(B=\frac{1}{3}+\left(\frac{1}{3}\right)^2+\left(\frac{1}{3}\right)^3+...+\left(\frac{1}{3}\right)^{2013}\)
Tìm số tự nhiên n thỏa mãn: \(1-2B=\left(\frac{1}{3}\right)^n\)