Đại số lớp 6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Cucheos

Tính biểu thức sau:

\(S=\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+...+\frac{1}{n\left(n+1\right)\left(n+2\right)\left(n+3\right)}\)

Đinh Thảo Duyên
9 tháng 2 2017 lúc 16:57

Biến đổi phân số ở dạng tổng quát:

\(\frac{1}{n\left(n+1\right)\left(n+2\right)\left(n+3\right)}=\frac{3}{3n\left(n+1\right)\left(n+2\right)\left(n+3\right)}=\frac{3+n-n}{3n\left(n+1\right)\left(n+2\right)\left(n+3\right)}\)

\(=\frac{1}{3}\left[\frac{n+3}{n\left(n+1\right)\left(n+2\right)\left(n+3\right)}-\frac{n}{n\left(n+1\right)\left(n+2\right)\left(n+2\right)}\right]\)

=\(\frac{1}{3}\left[\frac{1}{n\left(n+1\right)\left(n+2\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)\left(n+3\right)}\right]\)

Áp dụng kết quả vào bài, ta được:

\(\frac{1}{1.2.3.4}=\frac{1}{3}\left[\frac{1}{1.2.3}-\frac{1}{2.3.4}\right],\frac{1}{2.3.4.5}=\frac{1}{3}\left[\frac{1}{2.3.4}-\frac{1}{3.4.5}\right]\),...

\(\frac{1}{n\left(n+1\right)\left(n+2\right)\left(n+3\right)}=\frac{1}{3}\left[\frac{1}{n\left(n+1\right)\left(n+2\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)\left(n+3\right)}\right]\)

Cộng từng vế, ta được:

\(S=\frac{1}{3}\left[\frac{1}{1.2.3}-\frac{1}{\left(n+1\right)\left(n+2\right)\left(n+3\right)}\right].\)


Các câu hỏi tương tự
Cucheos
Xem chi tiết
Trần Thị Đào
Xem chi tiết
Trần Thị Đào
Xem chi tiết
Uzumaki Naruto
Xem chi tiết
Khuất Đăng Mạnh
Xem chi tiết
Khuất Đăng Mạnh
Xem chi tiết
Phùng Quang Tuyết Linh
Xem chi tiết
Khuất Đăng Mạnh
Xem chi tiết
Khuất Đăng Mạnh
Xem chi tiết