Biến đổi phân số ở dạng tổng quát:
\(\frac{1}{n\left(n+1\right)\left(n+2\right)\left(n+3\right)}=\frac{3}{3n\left(n+1\right)\left(n+2\right)\left(n+3\right)}=\frac{3+n-n}{3n\left(n+1\right)\left(n+2\right)\left(n+3\right)}\)
\(=\frac{1}{3}\left[\frac{n+3}{n\left(n+1\right)\left(n+2\right)\left(n+3\right)}-\frac{n}{n\left(n+1\right)\left(n+2\right)\left(n+2\right)}\right]\)
=\(\frac{1}{3}\left[\frac{1}{n\left(n+1\right)\left(n+2\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)\left(n+3\right)}\right]\)
Áp dụng kết quả vào bài, ta được:
\(\frac{1}{1.2.3.4}=\frac{1}{3}\left[\frac{1}{1.2.3}-\frac{1}{2.3.4}\right],\frac{1}{2.3.4.5}=\frac{1}{3}\left[\frac{1}{2.3.4}-\frac{1}{3.4.5}\right]\),...
\(\frac{1}{n\left(n+1\right)\left(n+2\right)\left(n+3\right)}=\frac{1}{3}\left[\frac{1}{n\left(n+1\right)\left(n+2\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)\left(n+3\right)}\right]\)
Cộng từng vế, ta được:
\(S=\frac{1}{3}\left[\frac{1}{1.2.3}-\frac{1}{\left(n+1\right)\left(n+2\right)\left(n+3\right)}\right].\)