Cho tam giác ABC có AM là trung tuyến, AM=AB. Cmr :
a, sinA=2sin(B-A)
b, cosC=3cotB
Cho tam giác ABC có AM là đường trung tuyến . Biết AM=AB. chứng minh :
a, sinA = 2sin( B-A) b, cotC=3cotB
Cho tam giác ABC vuông tại A, AB < AC, cosC = α < 45 0 , đường trung tuyến AM, đường cao AH, MA = MB = MC = α. Chứng minh:
a, sin2α = 2sin α.cos α
b, 1 + cos2α = 2 cos 2 α
c, 1 – cos2α = 2 sin 2 α
Góc 2α = A M H ^
a, Ta có: sin 2 α = A H A M = 2 A H A M = 2 A B . A C B C 2 = 2 sin α . cos α
b, 1 + cos2α = 1 + H M A M = H C A M = 2 H C B C = 2 . A C 2 B C 2 = 2 cos 2 α
c, 1 – cos2α = 1 - H M A M = H B A M = 2 H B B C = 2 . A B 2 B C 2 = 2 sin 2 α
cho tam giác abc nhọn ab<ac đường cao AH=h đường trung tuyến AM biết góc HAM=∝ cmr
a) HC-HB=2h.tan∝
b) tan∝=cosC/2-cosB/2
giải giúp mk với
Cho tam giác ABC trung tuyến AM cũng là phân giác
a, cmr : tam giác abc cân a
b biết AB =37 ; AM =35 . TÍNH BC
Xét\(\Delta\)AMB &\(\Delta\)AMC có:
BM=CM(AM là đg trung tuyến )
Góc BAM= góc CAM(AM là tia pg của góc A)
AM là cạnh chung
=>\(\Delta\)AMB=\(\Delta\)AMC(c.g.c)
=>AB=AC(2 cạnh tương ứng)
=>\(\Delta\)ABC cân tại A
b) theo a:\(\Delta\)AMB=\(\Delta\)AMC
=>góc AMB= góc AMC(2 góc tương ứng)
ta có: góc AMC+ góc AMB=180 độ(2 góc kề bù )
=>góc AMB+ góc AMB=180ĐỘ
=>góc AMB= góc AMC=90 độ
Xét \(\Delta\)AMB vuông tại M
=>AB^2=AM^2+BM^2(định lí pytago)
=>37^2=BM^2+35^2
=>BM^2=37^2-35^2=144=12^2
=>BM=12
=>CM=12
ta có:BC+BM+CM=12+12=24
a: ΔABC cân tại A
mà AM là trung tuyến
nên AM là phân giác của góc BAC
b: Xét ΔABC có
M là trung điểm của BC
MN//AB
=>N là trung điểm của AC
ΔAMC vuông taij M
mà MN là trung tuyến
nên MN=NA
c: Xét ΔABC có
BN.AM là trung tuyến
BN cắt AM tại O
=>O là trọng tâm
cho tam giác ABC cân tại A có AB=AC = 17cm; BC=16cm.kẻ trung tuyến AM .CMR a, AM vuông góc với BC , b, tính Am
Cho tam giác ABC cân tại A , trung tuyến AM . Từ M kẻ MN // AB , BN cắt AM tại O .
a) CMR: AN=NM
b) CMR : O là trọng tâm của tam giác ABC