Cho hình thoi ABCD có góc B bằng 60o qua D vẽ 1 đường thẳng nằm ngoài hình thoi cắt đường thẳng AD và BC tại E và F. Gọi K là giao điểm của AFvà CE. Chứng minh AD là tiếp tuyến của đường tròn ngoại tiếp tam giác KDF
Cho hình thoi ABCD có góc B bằng 60o qua D vẽ 1 đường thẳng nằm ngoài hình thoi cắt đường thẳng AD và BC tại E và F. Gọi K là giao điểm của AFvà CE. Chứng minh AD là tiếp tuyến của đường tròn ngoại tiếp tam giác KDF
Cho hình thoi ABCD có B= 60 độ. 1 đường thẳng qua D không cắt hình thoi nhưng cắt các đường thẳng AB và BC lần lượt tại E và F. Gọi M giao điểm AF, CE. Chứng minh AD tiếp xúc với đường tròn ngoại tiếp tam giác MDF.
Cho đường tròn tâm O và một điểm A nằm ngoài đường tròn này. Từ A vẽ hai tiếp tuyến AB, AC của đường tròn (O) (B và C là hai tiếp điểm). Gọi H là giao điểm của OA và BC.
a. Chứng minh OA vuông góc với BC tại H.
b. Từ B vẽ đường kính BD của (O), đường thẳng AD cắt đường tròn(O) tại E (E khác D). Chứng minh: AE.AD = AC^2
c. Qua O vẽ đường thẳng vuông góc với cạnh AD tại K và cắt đường BC tại F. Chứng minh rằng FD là tiếp tuyến của đường tròn (O).
Cho (O) và một điểm A nằm ngoài đường tròn (O). Từ A vẽ hai tiếp tuyến AB, AC của (O) (B và C là hai tiếp điểm). Gọi H là giao điểm của OA và BC. Từ B vẽ đường kính BD của (O), đường thẳng AD cắt (O) tại E (khác D). Qua O vẽ đường thẳng vuông góc với cạnh AD tại K và cắt đường BC tại F. Chứng minh DF là tiếp tuyến của (O).
Cho đường tròn (O) và một điểm A nằm ngoài đường tròn (O). Từ A vẽ hai tiếp tuyến AB, AC của đường tròn (O) (B và C là hai tiếp điểm tiếp điểm). Gọi H là giao điểm của OA và BC.
1) Chứng minh OA vuông góc với BC tại H
2) Từ B vẽ đường kính BD của (O), đường thẳng AD cắt đường tròn (O) tại E (khác D). Chứng minh: AE.AD = AH.AO
3) Qua O vẽ đường thẳng vuông góc với cạnh AD tại K và cắt đường BC tại F. Chứng minh FD là tiếp tuyến của đường tròn (O)
4) Gọi I là trung điểm cạnh AB, qua I vẽ đường thẳng vuông góc với cạnh AO tại M và đường thẳng này cắt đường thẳng DF tại N. Chứng minh: ND = NA
Cho đường tròn (O) và một điểm A ở ngoài đường tròn từ A vẽ hai tiếp tuyến AB , AC gọi H là giao điểm của OA và BC , từ B vẽ đường kính BD đường thẳng AD cắt (Ở) tại E qua (O) vẽ dường thẳng vuông góc với AD tại K và cắt BC tại F .Chứng minh FD là tiếp tuyến của (O)
Dễ thấy: A,B,O,K,CA,B,O,K,C nằm trên đường tròn đường kính OAOA .
Ta có: AE.AD=AB2=AH.AO⇒E,D,H,OAE.AD=AB2=AH.AO⇒E,D,H,O cùng thuộc 1 đường tròn
Mặt khác: A,E,B,HA,E,B,H cùng thuộc đường tròn đường kính ABAB nên ˆEHF=ˆBAD=ˆEBD=ˆEOFEHF^=BAD^=EBD^=EOF^
Suy ra: E,H,O,FE,H,O,F đồng viên. Suy ra: E,H,O,F,DE,H,O,F,D cùng thuộc đường tròn đường kính OFOF.
Gọi JJ là giao điểm của ININ và ADAD.
Xét 2 tam giác: ΔIHJΔIHJ và ΔFHDΔFHD
Ta có: ˆJIH=ˆAIJJIH^=AIJ^ (t/c đối xứng) =ˆABC=ˆDFH=ABC^=DFH^
Mặt khác:ˆIHJ=ˆIAJIHJ^=IAJ^(t/c đối xứng) =ˆEOF=ˆDHF=EOF^=DHF^
Suy ra:ΔIHJΔIHJ và ΔFHDΔFHD đồng dạng nên JHHD=IHFHJHHD=IHFH
Mà IBFNIBFN là hình bình hành nên NF=IB=IHNF=IB=IH hay JHHD=NFFHJHHD=NFFH
Mà ˆJHD=ˆNFHJHD^=NFH^ (dùng cộng góc, góc nội tiếp,...)
nên ΔJHDΔJHD và ΔNFHΔNFH đồng dạng nên JHDNJHDN nội tiếp
Ta suy ra:ˆNHD=ˆNJD=ˆHDFNHD^=NJD^=HDF^ nên suy ra: NH=NDNH=ND
Mà NH=NANH=NA (t/c đối xứng) nên NA=NDNA=ND(đ.p.c.m)
Cho đường tròn tâm O và cột điểm A nằm ngoài đường tròn tâm O . Từ A vẽ hai tiếp tuyến AB, AC của đường tròn tâm O (B và C là hai tiếp điểm) . Gọi H là giao điểm của OA và BC.
a)Chứng minh OA vuông góc với BC tại H
b) Từ B vẽ đường kính BD cua (O), đường thẳng AD cắt (O) tại E ( khác D)
Chứng minh: AE.AD=AH.AO
c) Qua O vẽ đường thẳng vuông góc với cạnh AD tại K và cắt đường BC tai F. Chứng minh FD là tiếp tuyến của đường tròn tâm O.
Cho điểm A nằm ngoài đường tròn (O; R), vẽ hai tiếp tuyến AB, AC với đường tròn (O) (B, C là các tiếp điểm). Vẽ đường kính BD của (O), gọi H là giao điểm của OA và BC.
a) Chứng minh rằng OA vuông góc với BC tại H.
b) Gọi E là giao điểm của AD và (O) ( E khác D). Chứng minh rằng AE.AD = AH.AO
c) Qua O vẽ đường thẳng vuông góc với AD tại K và cắt đường thẳng BC tại F. Chứng minh rằng FD là tiếp tuyến của (O).
d) Gọi I là trung điểm của AB, qua I vẽ đường thẳng vuông góc với OA tại M và đường thẳng này cắt DF tại N. Chứng minh rằng
NA = ND.
Mọi người giải giúp mình câu d) với nha! thanks mọi người nha!
Cho đường tròn (O) và một điểm A nằm ngoài đường tròn (O). Từ A vẽ tiếp tuyến AB,AC của đường tròn (O) ( B và C là 2 tiếp điểm). Gọi H là giao điểm của OA và BC.
1)chứng minh OA vuông góc với BC tại H
2) Từ B vẽ đường kính BD của (O), đường thẳng AD cắt đường tròn (O) tại E. Chứng minh: AE.AD=AH.AO
3) Qua O vẽ đường thẳng AD tại K và cắt đường Bc tại F. Chứng minh FD là tiếp tuyến (O)
4)gọi I là trung điểm cạnh AB, qua I vẽ đường thẳng vuông góc với cạnh AO tại M và đường thẳng này cắt đường thẳng DF tại N . Chứng minh : NA=ND
GIÚP EM GIẢI BÀI TẬP NÀY VỚI Ạ