Cho hình thoi ABCD có B= 60 độ. 1 đường thẳng qua D không cắt hình thoi nhưng cắt các đường thẳng AB và BC lần lượt tại E và F. Gọi M giao điểm AF, CE. Chứng minh AD tiếp xúc với đường tròn ngoại tiếp tam giác MDF.
Cho đường tròn tâm O và một điểm A nằm ngoài đường tròn này. Từ A vẽ hai tiếp tuyến AB, AC của đường tròn (O) (B và C là hai tiếp điểm). Gọi H là giao điểm của OA và BC.
a. Chứng minh OA vuông góc với BC tại H.
b. Từ B vẽ đường kính BD của (O), đường thẳng AD cắt đường tròn(O) tại E (E khác D). Chứng minh: AE.AD = AC^2
c. Qua O vẽ đường thẳng vuông góc với cạnh AD tại K và cắt đường BC tại F. Chứng minh rằng FD là tiếp tuyến của đường tròn (O).
Cho đường tròn (O) và một điểm A nằm ngoài đường tròn (O). Từ A vẽ hai tiếp tuyến AB, AC của đường tròn (O) (B và C là hai tiếp điểm tiếp điểm). Gọi H là giao điểm của OA và BC.
1) Chứng minh OA vuông góc với BC tại H
2) Từ B vẽ đường kính BD của (O), đường thẳng AD cắt đường tròn (O) tại E (khác D). Chứng minh: AE.AD = AH.AO
3) Qua O vẽ đường thẳng vuông góc với cạnh AD tại K và cắt đường BC tại F. Chứng minh FD là tiếp tuyến của đường tròn (O)
4) Gọi I là trung điểm cạnh AB, qua I vẽ đường thẳng vuông góc với cạnh AO tại M và đường thẳng này cắt đường thẳng DF tại N. Chứng minh: ND = NA
Cho đường tròn (O) và một điểm A ở ngoài đường tròn từ A vẽ hai tiếp tuyến AB , AC gọi H là giao điểm của OA và BC , từ B vẽ đường kính BD đường thẳng AD cắt (Ở) tại E qua (O) vẽ dường thẳng vuông góc với AD tại K và cắt BC tại F .Chứng minh FD là tiếp tuyến của (O)
Cho đường tròn tâm O và cột điểm A nằm ngoài đường tròn tâm O . Từ A vẽ hai tiếp tuyến AB, AC của đường tròn tâm O (B và C là hai tiếp điểm) . Gọi H là giao điểm của OA và BC.
a)Chứng minh OA vuông góc với BC tại H
b) Từ B vẽ đường kính BD cua (O), đường thẳng AD cắt (O) tại E ( khác D)
Chứng minh: AE.AD=AH.AO
c) Qua O vẽ đường thẳng vuông góc với cạnh AD tại K và cắt đường BC tai F. Chứng minh FD là tiếp tuyến của đường tròn tâm O.
Cho đường tròn (O) . Từ một điểm A nằm ngoài đường tròn kẻ các tiếp tuyến AB và AC( B,C là các tiếp điểm). H là giao điểm của OA và BC.
a) Chứng minh AO vuông góc với BC tại H.
b) từ điểm B Vẽ đường kính BD của đường tròn tâm O. Đường thẳng AD cắt đường tròn tâm O tại E( E khác D)
Chứng minh AE.AD=AH.AO
c) qua O kẻ đường thẳng vuông góc với AD tại K cắt BC tại F. Chứng minh FD là tiếp tuyến của đường tròn tâm O
Cho điểm A nằm ngoài đường tròn (O; R), vẽ hai tiếp tuyến AB, AC với đường tròn (O) (B, C là các tiếp điểm). Vẽ đường kính BD của (O), gọi H là giao điểm của OA và BC.
a) Chứng minh rằng OA vuông góc với BC tại H.
b) Gọi E là giao điểm của AD và (O) ( E khác D). Chứng minh rằng AE.AD = AH.AO
c) Qua O vẽ đường thẳng vuông góc với AD tại K và cắt đường thẳng BC tại F. Chứng minh rằng FD là tiếp tuyến của (O).
d) Gọi I là trung điểm của AB, qua I vẽ đường thẳng vuông góc với OA tại M và đường thẳng này cắt DF tại N. Chứng minh rằng
NA = ND.
Mọi người giải giúp mình câu d) với nha! thanks mọi người nha!
Cho đường tròn (O) và một điểm A nằm ngoài đường tròn (O). Từ A vẽ tiếp tuyến AB,AC của đường tròn (O) ( B và C là 2 tiếp điểm). Gọi H là giao điểm của OA và BC.
1)chứng minh OA vuông góc với BC tại H
2) Từ B vẽ đường kính BD của (O), đường thẳng AD cắt đường tròn (O) tại E. Chứng minh: AE.AD=AH.AO
3) Qua O vẽ đường thẳng AD tại K và cắt đường Bc tại F. Chứng minh FD là tiếp tuyến (O)
4)gọi I là trung điểm cạnh AB, qua I vẽ đường thẳng vuông góc với cạnh AO tại M và đường thẳng này cắt đường thẳng DF tại N . Chứng minh : NA=ND
GIÚP EM GIẢI BÀI TẬP NÀY VỚI Ạ
giups minh cau 1d, 2c , cam on nhieu
1. Cho tam giác ABC có ba góc nhọn. Đường tròn tâm (O) đường kính BC cắt hai cạnh Ab , AC lần lượt tại E và F. Gọi H là giao điểm của CE và BF, D là giao điểm của AD và BC.
a) Chứng minh AEHF nội tiếp
b) Chứng minh EC là tia phân giác của góc DEF
c) Đường thẳng EF cắt BC tại M, Chứng minh MB.MC=ME.MF=MO.MD
d) AD cắt đường tròn (O) tại I, chứng minh MI là tiếp tuyến của (O)
e) Đường thẳng qua D song song với MF, cắt AB và AC lần lượt tại K và L. Chứng minh : M, K, L, O cùng thuộc một đường tròn.
2. Từ một điểm A nằm ngoài đường tròn (O) kẻ hai tiếp tuyến AB và AC đến (O) (B và C là các tiếp điểm) và một cát tuyến ADE không đi qua tâm O (D nằm giữa A và E), gọi I là trung điểm của DE.
a) Chứng minh 5 điểm A;B;O;I;C cùng nằm trên một đường tròn suy ra IA là phân giác của góc BIC
b) BC cắt AE tại K. Chứng minh KA.KI=KD.KE
c) Qua C kẻ đường thẳng song với AB, đường này cắt các đướng thẳng BE, BD lần lượt tại P và Q. Chứng minh C là trung điểm của PQ.
d) Đường thẳng OI cắt đường tròn (O) tại S và H. Đường thẳng HK cắt (O) tại điểm thứ hai là T. Chứng minh 3 điểm A, T, S thẳng hàng