Tìm số tự nhiên n để phân số 10n-3/4n-10 đạt giá trị lớn nhất. Tìm giá trị lớn nhất đó.
Tìm số tự nhiên n để phân số B=10n-3/4n-10 đạt giá trị lớn nhất . Tìm giá trị lớn nhất đó ?
Answer:
\(B=\frac{10n-3}{4n-10}\)
\(=\frac{5.\left(2n-5\right)+22}{2.\left(n-5\right)}\)
\(=\frac{5}{2}+\frac{22}{2.\left(2n-5\right)}\)
\(=\frac{5}{2}+\frac{11}{2n-5}\)
Mà để B đạt giá trị lớn nhất thì \(\frac{11}{2n-5}\) đạt giá trị lớn nhất
Mà ta có: 11 > 0 thì \(\frac{11}{2n-5}\) đạt giá trị lớn nhất khi:
2n - 5 > 0 và đạt giá trị nhỏ nhất khi: \(2n-5=1\Rightarrow2n=6\Rightarrow n=3\)
Tương tự: Giá trị lớn nhất là: \(11+\frac{5}{2}=13,5\)
Vậy giá trị lớn nhất của biểu thức \(B=13,5\) khi \(n=3\)
tìm số tự nhiên n để phân số 10n-3/ 4n-10 đạt giá trị lớn nhất. tìm giá trị lớn nhất đó
tím số tự nhiên n để phân số B=10n-3/4n-10 đạt giá trị lớn nhất .tìm giá trị lớn nhất đó
Tìm số tự nhiên n để phân số B=\(\frac{10n-3}{4n-10}\)đạt giá trị lớn nhất . Tìm giá trị lớn nhất đó
http://olm.vn/hoi-dap/question/92487.html
Tìm số tự nhiên n để phân số B=\(\frac{10n-3}{4n-10}\)đạt giá trị lớn nhất? Tìm giá trị lớn nhất đó.
\(2B=\frac{10n-3}{2n-5}=\frac{10n-25+22}{2n-5}=\frac{5\left(2n-5\right)}{2n-5}+\frac{22}{2n-5}\)
=> \(2B=5+\frac{22}{2n-5}\)
Để B đạt giá trị lớn nhất thì 2B phải đạt GTLN
=> \(\frac{22}{2n-5}\)phải đạt GTLN => (2n-5) đạt GTNN => n=0 => 2n-5=-5
GTLN của 2B là: \(2B_{max}=5-\frac{22}{5}=\frac{3}{5}\)
=> \(B_{max}=\frac{3}{10}\) đạt được khi n=0
Để B đạt GTLN thì 2B đạt GTLN
Ta có:
2B=2.10n−34n−10=20n−64n−10=20n−50+444n−10=5.(4n−10)+444n−102B=2.10n−34n−10=20n−64n−10=20n−50+444n−10=5.(4n−10)+444n−10
2B=5.(4n−10)4n−10+444n−10=5+444n−102B=5.(4n−10)4n−10+444n−10=5+444n−10
Để 2B đạt GTLN thì 444n−10444n−10 đạt GTLN
=> 4n - 10 đạt GTNN
+ Với x < 3 thì 4n - 10 < 0, khi đó 444n−10<0444n−10<0
+ Với x≥3x≥3 thì 4n - 10 > 0, khi đó 444n−10444n−10 > 0
Mà n nhỏ nhất => n = 3
Như vậy, ta tìm được n = 3 thỏa mãn 2B đạt GTLN
Thay n = 3 vào B ta có:
B=10.3−34.3−10=30−312−10=272B=10.3−34.3−10=30−312−10=272
Vậy với n = 3 thì B đạt GTNN = 272
Tìm số tự nhiên n để phân số B=10n-3/4n-10 đạt giá trị lớn nhất. Tìm giá trị lớn nhất đó
giải xong mình tick cho
Tìm số tự nhiên n để Phân số B =\(\frac{10n-3}{4n-10}\)đạt giá trị lớn nhất . Tìm giá trị lớn nhất đó
ta có:\(B=\frac{10n-3}{4n-10}=\frac{5.\left(2n-5\right)+22}{2.\left(2n-5\right)}=\frac{5}{2}+\frac{22}{2.\left(2n-5\right)}=\frac{5}{2}+\frac{11}{2n-5}\)
\(Bmax\Leftrightarrow\frac{5}{2}+\frac{11}{2n-5}max\Leftrightarrow\frac{11}{2n-5}max\Leftrightarrow2n-5=1\)
\(\Leftrightarrow2n=6\Leftrightarrow n=3\)
\(B=\frac{5}{2}+11=\frac{27}{2}\)
VẬY \(n=3\) THÌ \(maxB=\frac{27}{2}\)
Tìm số tự nhiên n để phân số \(B=\frac{10n-3}{4n-10}\) đạt giá trị lớn nhất. Tím giá trị lớn nhất đó.
\(B=\frac{10n-3}{4n-10}\)
\(\Leftrightarrow2B=\frac{20n-6}{4n-10}=\frac{20n-50+44}{4n-10}=5+\frac{44}{4n-1}\)
Để 2B Max
=>\(\frac{44}{4n-10}\)max
Có \(\frac{44}{4n-10}=44\)
\(\Rightarrow4n=11\Leftrightarrow n=\frac{11}{4}\)
Vậy Max B = 5 + 44 = 49 <=> n = 11/4
๖²⁴ʱphạmtuấnĐͥ�ͣ�ͫt༉
làm sai, n là số tự nhiên nha
Để phân số \(\frac{10n-3}{4n-10}\) đạt giá trị lớn nhất => 4n - 10 lớn nhất
Xét từng trường hợp:
+) Nếu 4n - 10 < 0 => n là số nguyên ( loại )
+) Nếu 4n - 10 = 0 => n là phân số ( loại )
+) Nếu 4n - 10 = 1 => n là phân số ( loại )
+) Nếu 4n - 10 = 2 => n = 3 ( thỏa mãn )
Vì để 4n - 10 có giá trị nhỏ nhất => ta loại 2 trường hợp 4n - 10 = 3 và 4n - 10 > 3
=> Với n = 3 thì B có giá trị lớn nhất.
Thay n = 3 vào B ta có: \(B=\frac{10n-3}{4n-10}=\frac{10\cdot3-3}{4\cdot3-10}=\frac{27}{2}\)
=> Giá trị lớn nhất của B là \(\frac{27}{2}\)
- Bài này trong kỳ thi HG huyện mk có nek =))