Tìm GTLN của hàm số:
1.y=x^2(1-x), với x ∈ [0;1]
2.y=lxl \(\sqrt{4-x^2}\), vs -2 ≤ x ≤ 1
help mik vs, mik cần rất gấp
a, Cho `0<x<25`
Tìm GTLN:`(80-2x)(50-2x)x`
b, `0<x<2`. Tìm GTLN: `5x(2-x)`
c, `x≥2`. Tìm GTLN: `x + 1/x`
d, Cho `x,y>0, x+y≤1`. TÌm GTNN: `x + y + 1/x + 1/y`
d. Áp dụng BĐT Caushy Schwartz ta có:
\(x+y+\dfrac{1}{x}+\dfrac{1}{y}\le x+y+\dfrac{\left(1+1\right)^2}{x+y}=x+y+\dfrac{4}{x+y}\le1+\dfrac{4}{1}=5\)
-Dấu bằng xảy ra \(\Leftrightarrow x=y=\dfrac{1}{2}\)
c. Bạn kiểm tra lại đề nhé.
b. \(5x\left(2-x\right)=-5x\left(x-2\right)=-5\left(x^2-2x\right)=-5\left(x^2-2x+1-1\right)=-5\left(x-1\right)^2+5\le5\)-Dấu bằng xảy ra \(\Leftrightarrow x=1\)
a.
\(\left(80-2x\right)\left(50-2x\right)x=\dfrac{2}{3}\left(40-x\right)\left(50-2x\right)3x\le\dfrac{2}{3}\left(\dfrac{40-x+50-2x+3x}{3}\right)^3=18000\)
Dấu "=" xảy ra khi \(40-x=50-2x=3x\Leftrightarrow x=10\)
b.
\(5x\left(2-x\right)=5.x\left(2-x\right)\le\dfrac{5}{4}\left(x+2-x\right)^2=5\)
Dấu "=" xảy ra khi \(x=2-x\Rightarrow x=1\)
c.
Biểu thức này chỉ có min, ko có max
d.
\(x+y\le1\Rightarrow-\left(x+y\right)\ge-1\)
\(x+y+\dfrac{1}{x}+\dfrac{1}{y}=\left(4x+\dfrac{1}{x}\right)+\left(4y+\dfrac{1}{y}\right)-3\left(x+y\right)\ge2\sqrt{\dfrac{4x}{x}}+2\sqrt{\dfrac{4y}{y}}-3.1=5\)
Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)
Giúp mk vs:
Tìm GTNN,GTLN của M = x^2+xy+y^2/ x^2+y^2
Max:
\(M=\frac{x^2+xy+y^2}{x^2+y^2}=1+\frac{xy}{x^2+y^2}\le1+\frac{xy}{2\left|xy\right|}\le1+\frac{xy}{2xy}=1+\frac{1}{2}=\frac{3}{2}\)
Dấu "=" xảy ra tại x=y
1,Tìm GTLN: 1, A=|x^2-x+1|-|x^2-x-2|
2,Tìm GTLN: B=|x-y|+|x-z|+|y-z| với 0<x,y,z<3
\(Taco:\)
\(|x^2-x+1|-|x^2-x-2|=|x^2-x+1|+\left(-|x^2-x-2|\right)\)
\(\ge|x^2-x+1-x^2+x+2|=3\)
Dấu "=" xảy ra khi: \(\left(x^2-x+1\right)\left(x^2-x-2\right)\ge0\Leftrightarrow........\)
giúp mik vs ạ!!!
Cho x,y thỏa mãn: x^2 + 2y^2 + 2xy + 7x + 7y + 10 = 0. Tìm GTLN, GTNN của S = x + y
Tìm GTLN của F = - x^2 - 2y^2 + 2xy - y +1 Mn giúp em vs ạk💓
\(F=-x^2-2y^2+2xy-y+1\)
\(-F=x^2+2y^2-2xy+y-1\)
\(-F=\left(x^2-2xy+y^2\right)+\left(y^2+y+\frac{1}{4}\right)-\frac{5}{4}\)
\(-F=\left(x-y\right)^2+\left(y+\frac{1}{2}\right)^2-\frac{5}{4}\)
Mà \(\left(x-y\right)^2\ge0\forall x;y\)
\(\left(y+\frac{1}{2}\right)^2\ge0\forall y\)
\(\Rightarrow-F\ge-\frac{5}{4}\)
\(\Leftrightarrow F\le\frac{5}{4}\)
Dấu "=" xảy ra khi :
\(\hept{\begin{cases}x-y=0\\y+\frac{1}{2}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{1}{2}\\y=-\frac{1}{2}\end{cases}}\)
Vậy \(F_{Max}=\frac{5}{4}\Leftrightarrow x=y=-\frac{1}{2}\)
1. Cho x,y thỏa mãn: x2 + 5y2 - 4xy + 2y = 3. Tìm x,y sao cho x đạt GTLN
2. Cho x,y thỏa mãn: 3x2 + y2 + 2xy + 4 = 7x + 3y
a) Tìm GTNN, GTLN của biểu thức P = x + y
b) Tìm GTNN, GTLN của x
3. Cho x,y thỏa mãn: x2 + 2y2 + 2xy + 7x + 7y + 10 = 0. Tìm GTLN, GTNN của S = x + y
Answer:
3.
\(x^2+2y^2+2xy+7x+7y+10=0\)
\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)
\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)
\(\Rightarrow4S^2+28S+4y^2+40=0\)
\(\Rightarrow4S^2+28S+49+4y^2-9=0\)
\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)
\(\Rightarrow-3\le2S+7\le3\)
\(\Rightarrow-10\le2S\le-4\)
\(\Rightarrow-5\le S\le-2\left(2\right)\)
Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)
Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)
Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)
Tìm GTLN, GTNN của
a,x⁴-8xy-x³y+x²y²-xy³+y⁴+200
b,(x²+5x+4).(x+2).(x+3)
Mn giúp mk vs nha