Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Văn Vũ
Xem chi tiết
Hoàng Lê Bảo Ngọc
28 tháng 12 2016 lúc 22:29

\(\frac{a}{1+b^2}=a-\frac{ab^2}{1+b^2}\ge a-\frac{ab^2}{2b}=a-\frac{ab}{2}\)

Tương tự : \(\frac{b}{1+c^2}\ge b-\frac{bc}{2}\) ; \(\frac{c}{1+a^2}\ge c-\frac{ac}{2}\)

Cộng theo vế : \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge3-\frac{1}{2}\left(ab+bc+ac\right)\ge3-\frac{1}{2}.\frac{\left(a+b+c\right)^2}{3}=\frac{3}{2}\)

\(\Rightarrow\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge\frac{3}{2}\)

Đỗ Đức Đạt
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
6 tháng 4 2021 lúc 13:53

Ta có : \(\hept{\begin{cases}\frac{a^3}{a^2+b^2+ab}=\frac{a^4}{a\left(a^2+b^2+ab\right)}=\frac{a^4}{a^3+ab^2+a^2b}=\frac{a^4}{a^3+ab\left(a+b\right)}\\\frac{b^3}{b^2+c^2+bc}=\frac{b^4}{b\left(b^2+c^2+bc\right)}=\frac{b^4}{b^3+bc^2+b^2c}=\frac{b^4}{b^3+bc\left(b+c\right)}\\\frac{c^3}{c^2+a^2+ca}=\frac{c^4}{c\left(c^2+a^2+ca\right)}=\frac{c^4}{c^3+ca^2+c^2a}=\frac{c^4}{c^3+ca\left(c+a\right)}\end{cases}}\)

Khi đó bất đẳng thức được viết lại thành :

\(\frac{a^4}{a^3+ab\left(a+b\right)}+\frac{b^4}{b^3+bc\left(b+c\right)}+\frac{c^4}{c^3+ca\left(c+a\right)}\ge\frac{a+b+c}{3}\)

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(VT\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^3+b^3+c^3+ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)}\)

Dễ dàng phân tích \(a^3+b^3+c^3+ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)=\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)

=> \(VT\ge\frac{\left(a^2+b^2+c^2\right)^2}{\left(a+b+c\right)\left(a^2+b^2+c^2\right)}=\frac{a^2+b^2+c^2}{a+b+c}\)

Xét bất đẳng thức phụ : 3( a2 + b2 + c2 ) ≥ ( a + b + c )2

<=> 3a2 + 3b2 + 3c2 - a2 - b2 - c2 - 2ab - 2bc - 2ca ≥ 0

<=> 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ca ≥ 0

<=> ( a - b )2 + ( b - c )2 + ( c - a )2 ≥ 0 ( đúng )

Khi đó áp dụng vào bài toán ta có : \(VT\ge\frac{a^2+b^2+c^2}{a+b+c}=\frac{\frac{\left(a+b+c\right)^2}{3}}{a+b+c}=\frac{a+b+c}{3}\)( đpcm )

Đẳng thức xảy ra <=> a=b=c

Khách vãng lai đã xóa
Khánh Ngọc
6 tháng 4 2021 lúc 17:30

bài này mới được thầy sửa hồi chiều nè @@

Vì a,b dương => ( a + b ) ( a - b )2 \(\ge\)0 => a3 + b3 \(\ge\)ab ( a + b )

BĐT tương đương với 3a3\(\ge\)2a3 + 2ab ( a + b ) - b3 = 2a3 + 2a2b + 2ab2 - a2b - ab2 - b3 = ( a2 + ab + b3 ) ( 2a - b )

Suy ra : \(\frac{a^3}{a^2+ab+b^2}\ge\frac{2a-b}{3}\)(1)

Chứng minh tương tự ta được : \(\frac{b^3}{b^2+bc+c^2}\ge\frac{2b-c}{3}\)(2) ; \(\frac{c^3}{c^2+ca+a^2}\ge\frac{2c-a}{3}\)(3)

Từ (1) ; (2) và (3) => \(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\ge\frac{a+b+c}{3}\)(đpcm)

Khách vãng lai đã xóa
Phan Nghĩa
4 tháng 6 2021 lúc 9:00

cách ít lòng vòng hơn cách của quỳnh nhiều nè 

Ta có đẳng thức sau : \(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\)( cách cm thì chỉ cần chuyển vế rồi dùng hđt thôi)

Khi đó : \(2VT=\frac{a^3+b^3}{a^2+ab+b^2}+\frac{b^3+c^3}{b^2+bc+c^2}+\frac{c^3+a^3}{c^2+ca+a^2}\)

Áp dụng bất đẳng thức phụ \(\frac{x^3+y^3}{x^2+xy+y^2}\ge\frac{1}{3}\left(x+y\right)\)có : ( biến đổi tương đương là được nhé )

\(2VT\ge\frac{1}{3}\left(a+b\right)+\frac{1}{3}\left(b+c\right)+\frac{1}{3}\left(c+a\right)=\frac{1}{3}.2.\left(a+b+c\right)\)

\(< =>VT\ge\frac{1}{3}\left(a+b+c\right)=\frac{a+b+c}{3}\)

Đẳng thức xảy ra khi và chỉ khi \(a=b=c\)

Khách vãng lai đã xóa
Nguyễn Minh Tuyền
Xem chi tiết
vũ tiền châu
31 tháng 12 2017 lúc 15:22

ta có 

A=\(\frac{a^4}{ab^2+abc+c^2a}+\frac{b^4}{bc^2+abc+ba^2}+\frac{c^4}{ca^2+abc+cb^2}\)

>=\(\frac{\left(a^2+b^2+c^2\right)^2}{ab^2+a^2b+bc^2+cb^2+ca^2+ac^2+3abc}\) =\(\frac{\left(a^2+b^2+c^2\right)^2}{\left(a+b+c\right)\left(ab+bc+ca\right)}\) (Đấy  là bđt svacxơ nhé )

ta cần chứng minh \(\frac{\left(a^2+b^2+c^2\right)^2}{\left(a+b+c\right)\left(ab+bc+ca\right)}\ge\sqrt{\frac{a^2+b^2+c^2}{3}}\Leftrightarrow\frac{\sqrt{a^2+b^2+c^2}\left(a^2+b^2+c^2\right)}{\left(a+b+c\right)\left(ab+bc+ca\right)}\ge\frac{1}{\sqrt{3}}\)

   điều này luôn đúng vì dễ dàng chứng minh \(a^2+b^2+c^2\ge ab+bc+ca;\)

                                               và \(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\Rightarrow\sqrt{a^2+b^2+c^2}\ge\frac{a+b+c}{\sqrt{3}}\)

đến đây bạn nhân vào sẽ ra ĐPCM

dáu = xảy ra <=> a=b=c>0

Dung Đặng Phương
Xem chi tiết
Trần Hữu Ngọc Minh
15 tháng 10 2017 lúc 19:27

bài 2

(bài này là đề thi olympic Toán,Ireland 1997),nhưng cũng dễ thôi

Giả sử ngược lại \(a^2+b^2+c^2< abc\)

khi đó \(abc>a^2+b^2+c^2>a^2\)nên \(a< bc\)

Tương tự \(b< ac,c< ab\)

Từ đó suy ra :\(a+b+c< ab+bc+ac\left(1\right)\)

mặt khác ta lại có:\(a^2+b^2+c^2\ge ab+bc+ac\)nên

\(abc>a^2+b^2+c^2\ge ab+bc+ac\)

\(\Rightarrow abc>ab+ac+bc\left(2\right)\)

Từ (1),(2) ta có\(abc>a+b+c\)(trái với giả thuyết)

Vậy bài toán được chứng minh

Trần Hữu Ngọc Minh
15 tháng 10 2017 lúc 21:54

3)để đơn giản ta đặt \(x=\frac{1}{a},y=\frac{1}{b},z=\frac{1}{c}\).Khi đó \(x,y,z>0\)

và \(xy+yz+xz\ge1\)

ta phải chứng minh  có ít nhất hai trong ba bất đẳng thức sau đúng

\(2x+3y+6z\ge6,2y+3z+6x\ge6,2z+3x+6y\ge6\)

Giả sử khẳng định này sai,tức là có ít nhất hai trong ba bất đẳng thức trên sai.Không mất tính tổng quát,ta giả sử

\(2x+3y+6z< 6\)và \(2y+3z+6x< 6\)

Cộng hai bất đẳng thức này lại,ta được:\(8x+5y+9z< 12\)

Từ giả thiết \(xy+yz+xz\ge1\Rightarrow x\left(y+z\right)\ge1-yz\)

\(\Rightarrow x\ge\frac{1-yz}{y+z}\)Do đó

\(8\frac{1-yz}{y+z}+5y+9z< 12\Leftrightarrow8\left(1-yz\right)+\left(5y+9z\right)\left(y+z\right)< 12\left(y+z\right)\)

\(\Leftrightarrow5y^2+6yz+9z^2-12y-12z+8< 0\)

\(\Leftrightarrow\left(y+3z-2\right)^2+4\left(y-1\right)^2< 0\)(vô lý)

mâu thuẫn này chứng tỏ khẳng định bài toán đúng.Phép chứng minh hoàn tất.

Phương Linh
Xem chi tiết
Mr Lazy
16 tháng 10 2015 lúc 5:36

\(\frac{a^3}{a^2+b^2}-\left(a-\frac{1}{2}b\right)=\frac{\frac{1}{2}b\left(a-b\right)^2}{a^2+b^2}\ge0\Rightarrow\frac{a^3}{a^2+b^2}\ge a-\frac{1}{2}b\)

Cao Hoàng Quân
26 tháng 8 2023 lúc 20:47

\(\sum\limits^{ }_{ }\)

Cao Hoàng Quân
26 tháng 8 2023 lúc 20:48

die cha gửi nhầm

trần xuân quyến
Xem chi tiết
Nguyễn Tất Đạt
19 tháng 12 2018 lúc 13:26

Áp dụng BĐT AM-GM: \(1+b^2\ge2b\)

\(\Rightarrow\frac{a}{1+b^2}=a-\frac{ab^2}{1+b^2}\ge a-\frac{ab^2}{2b}=a-\frac{ab}{2}\)

Tương tự: \(\frac{b}{1+c^2}\ge b-\frac{bc}{2};\frac{c}{1+a^2}\ge c-\frac{ca}{2}\)

Cộng vế với vế 3 BĐT trên ta được:  \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge\left(a+b+c\right)-\frac{ab+bc+ca}{2}=3-\frac{ab+bc+ca}{2}\)

Mà \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\) 

Nên \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge3-\frac{\left(a+b+c\right)^2}{6}=3-\frac{9}{6}=\frac{3}{2}\)(đpcm).

Dấu "=" xảy ra <=> a=b=c=1.

Đanh Fuck Boy :))
Xem chi tiết
Phan Nghĩa
2 tháng 6 2021 lúc 8:58

Không mất tính tổng quát giả sử \(a\ge b\ge c>0\)

\(BĐT< =>\frac{a\left(b+c\right)\left(c+a\right)+b\left(a+b\right)\left(c+a\right)+c\left(a+b\right)\left(b+c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge\frac{3}{2}\)

\(< =>\frac{ac^2+ba^2+cb^2+\left(a+b+c\right)\left(ab+bc+ca\right)}{\left(a+b+c\right)\left(ab+bc+ca\right)-abc}\ge\frac{3}{2}\)

\(< =>2\left[ac^2+ba^2+cb^2+\left(a+b+c\right)\left(ab+bc+ca\right)\right]\ge3\left[\left(a+b+c\right)\left(...\right)-abc\right]\)

\(< =>2\left(ac^2+a^2b+cb^2\right)\ge\left(a+b+c\right)\left(ab+bc+ca\right)-3abc\)

\(< =>ac^2+a^2b+cb^2\ge ca^2+ab^2+c^2b\)

\(< =>\left(c-b\right)\left(c-a\right)\left(a-b\right)\ge0\)(đúng)

Vậy ta có điều phải chứng minh

Khách vãng lai đã xóa
Phan Nghĩa
2 tháng 6 2021 lúc 9:15

Ta có bất đẳng thức sau \(\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\ge9\)( cm = bunhia phân thức )

\(< =>1+\frac{a+b}{b+c}+\frac{a+b}{c+a}+1+\frac{b+c}{a+b}+\frac{b+c}{c+a}+1+\frac{c+a}{a+b}+\frac{c+a}{b+c}\ge9\)

\(< =>\frac{a}{a+b}+\frac{2a}{b+c}+\frac{a}{c+a}+\frac{b}{a+b}+\frac{b}{b+c}+\frac{2b}{c+a}+\frac{2c}{a+b}+\frac{c}{b+c}+\frac{c}{c+a}\ge6\)(*)

Đặt \(A=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\);\(B=\frac{a}{a+c}+\frac{b}{b+a}+\frac{c}{c+b}\);\(C=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)

Khi đó bất đẳng thức (*) tương đương với \(A+B+2C\ge6\)

Do\(A+B=3\)\(=>2C\ge3=>C\ge\frac{3}{2}\)

Suy ra \(A+B+C\ge6-\frac{3}{2}=\frac{12-3}{2}=\frac{9}{2}\)(1)

Xét tổng :\(B+C=\frac{a}{a+c}+\frac{b}{b+a}+\frac{c}{c+b}+\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{a+b}{a+c}+\frac{c+a}{b+c}+\frac{b+c}{a+b}\ge3\)(AM-GM) (2)

Từ (1) và (2) ta được \(A\ge\frac{9}{2}-3=\frac{3}{2}\)

Done !

Khách vãng lai đã xóa
Nguyễn Đức Nghĩa
Xem chi tiết
Nguyễn Đăng Nhân
24 tháng 2 2022 lúc 17:26

Áp dụng bất đẳng thức Bunhiacopxki ta được:

\(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}\ge\frac{3\left(ab+bc+ca\right)}{2\left(a+b+c\right)}\)

\(\frac{b^2}{a+b}+\frac{c^2}{b+c}+\frac{a^2}{c+a}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}\ge\frac{3\left(ab+bc+ca\right)}{2\left(a+b+c\right)}\)

Cộng theo vế hai bất đẳng thức trên ta được:

\(\frac{a^2+b^2}{a+b}+\frac{b^2+c^2}{b+c}+\frac{c^2+a^2}{c+a}\ge\frac{3\left(ab+bc+ca\right)}{a+b+c}\)

Bất đẳng thức được chứng minh. Dấu đẳng thức xảy ra khi \(a=b=c\)

Khách vãng lai đã xóa
NGUYỄN MINH HUY
Xem chi tiết
Nguyễn Xuân Tiến 24
31 tháng 8 2018 lúc 21:36

Ta có: Theo bất đẳng thức cauchy schwarz và bất đẳng thức cauchy với a;b;c>0 ta có:

\(\dfrac{1}{a^2}+\dfrac{1}{a^2}=\dfrac{\left(\sqrt{a}\right)^2}{a^3}+\dfrac{1}{a^2}\ge\dfrac{\left(\sqrt{a}+1\right)^2}{a^3+a^2}\ge\dfrac{4\sqrt{a}}{a^3+a^2}\)(1)

Tương tự \(\dfrac{1}{b^2}+\dfrac{1}{b^2}\ge\dfrac{4\sqrt{b}}{b^3+b^2}\left(2\right);\dfrac{1}{c^2}+\dfrac{1}{c^2}\ge\dfrac{4\sqrt{c}}{c^3+c^2}\left(3\right)\)

Cộng từng vế (1) ;(2);(3) vế theo vế rồi chia hai vế cho 2 ta có đpcm

Ma Sói
1 tháng 9 2018 lúc 14:53

Căn bậc hai. Căn bậc ba

DƯƠNG PHAN KHÁNH DƯƠNG
1 tháng 9 2018 lúc 15:01

Áp dụng BĐT Cauchy schwarz kết hợp với AM-GM cho các số dương ta có :

\(\dfrac{1}{a^2}+\dfrac{1}{b^2}=\dfrac{a}{a^3}+\dfrac{1}{b^2}\ge\dfrac{\left(\sqrt{a}+1\right)^2}{a^3+b^2}\ge\dfrac{4\sqrt{a}}{a^3+b^2}\)

\(\dfrac{1}{b^2}+\dfrac{1}{c^2}=\dfrac{b}{b^3}+\dfrac{1}{c^2}\ge\dfrac{\left(\sqrt{b}+1\right)^2}{b^3+c^2}\ge\dfrac{4\sqrt{b}}{b^3+c^2}\)

\(\dfrac{1}{c^2}+\dfrac{1}{a^2}=\dfrac{c}{c^3}+\dfrac{1}{a^2}\ge\dfrac{\left(\sqrt{c}+1\right)^2}{c^3+a^2}\ge\dfrac{4\sqrt{c}}{c^3+a^2}\)

Cộng từng vế của BĐT ta được :

\(2\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)\ge\dfrac{4\sqrt{a}}{a^3+b^2}+\dfrac{4\sqrt{b}}{b^3+c^2}+\dfrac{4\sqrt{c}}{c^3+a^2}\)

\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\ge\dfrac{2\sqrt{a}}{a^3+b^2}+\dfrac{2\sqrt{b}}{b^3+c^2}+\dfrac{2\sqrt{c}}{c^3+a^2}\) ( đpcm )

Dấu \("="\) xảy ra khi \(a=b=c\)