cho a,b là các số dương là a+b>1.CMR \(a+b+\dfrac{1}{a}+\dfrac{1}{b}\ge5\)
Cho 2 số dương a, b. CHứng minh: \(\dfrac{a}{b^2}+\dfrac{b}{a^2}+\dfrac{16}{a+b}\ge5.\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\)
BĐT cần chứng minh tương đương với:
\(\left(\dfrac{a}{b^2}-\dfrac{2}{b}+\dfrac{1}{a}\right)+\left(\dfrac{b}{a^2}-\dfrac{2}{a}+\dfrac{1}{b}\right)\ge4\left(\dfrac{1}{a}+\dfrac{1}{b}\right)-\dfrac{16}{a+b}\)
\(\Leftrightarrow\left(a+b\right)\left(\dfrac{1}{a}-\dfrac{1}{b}\right)^2\ge\dfrac{4\left(a-b\right)^2}{ab\left(a+b\right)}\)
\(\Leftrightarrow\dfrac{\left(a+b\right)\left(a-b\right)^2}{a^2b^2}\ge\dfrac{4\left(a-b\right)^2}{ab\left(a+b\right)}\).
\(\Leftrightarrow\left(a-b\right)^2\left[\dfrac{a+b}{a^2b^2}-\dfrac{4}{ab\left(a+b\right)}\right]\ge0\)
\(\Leftrightarrow\dfrac{\left(a-b\right)^4}{a^2b^2\left(a+b\right)}\ge0\) (luôn đúng).
`a/b^2+b/a^2+16/(a+b)>=5(1/a+1/b)`
`<=>a/b^2-1/b+b^2-1/a+4(4/(a+b)-1/a-1/b)=0`
`<=>(a-b)/b^2+(b-a)/a^2+4((4ab-(a+b)^2)/(ab(a+b)))>=0`
`<=>(a^2(a-b)-b^2(a-b))/(a^2b^2)-(4(a-b)^2)/(ab(a+b))>=0`
`<=>(a-b)^2[(a+b)^2-4ab]>=0`
`<=>(a-b)^2(a^2-2ab+b^2)>=0`
`<=>(a-b)^2(a-b)^2>=0`
`<=>(a-b)^4>=0` luôn đúng.
Dấu "=" xảy ra khi `a=b`
Cho a, b, c là các số dương thỏa mãn: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\). CMR: \(\dfrac{a^2}{a+bc}+\dfrac{b^2}{b+ca}+\dfrac{c^2}{c+ba}\le\dfrac{a+b+c}{4}\)
Sửa \(\le\) thành \(\ge\) nha bạn
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\Leftrightarrow ab+bc+ca=abc\)
Ta có \(\dfrac{a^2}{a+bc}=\dfrac{a^3}{a^2+abc}=\dfrac{a^3}{a^2+ab+bc+ca}=\dfrac{a^3}{\left(a+b\right)\left(a+c\right)}\)
Tương tự: \(\left\{{}\begin{matrix}\dfrac{b^2}{b+ca}=\dfrac{b^3}{\left(b+a\right)\left(b+c\right)}\\\dfrac{c^2}{c+ba}=\dfrac{c^3}{\left(c+b\right)\left(c+a\right)}\end{matrix}\right.\)
Áp dụng BĐT cosi:
\(\dfrac{a^3}{\left(a+b\right)\left(a+c\right)}+\dfrac{a+b}{8}+\dfrac{a+c}{8}\ge3\sqrt[3]{\dfrac{a^3}{64}}=\dfrac{3}{4}a\)
\(\dfrac{b^3}{\left(b+a\right)\left(b+c\right)}+\dfrac{a+b}{8}+\dfrac{b+c}{8}\ge3\sqrt[3]{\dfrac{b^3}{64}}=\dfrac{3}{4}b\)
\(\dfrac{c^3}{\left(c+b\right)\left(c+a\right)}+\dfrac{b+c}{8}+\dfrac{a+c}{8}\ge3\sqrt[3]{\dfrac{c^3}{64}}=\dfrac{3}{4}c\)
Cộng VTV:
\(\Leftrightarrow VT+\dfrac{a+b}{8}+\dfrac{a+c}{8}+\dfrac{b+c}{8}\ge\dfrac{3}{4}\left(a+b+c\right)\\ \Leftrightarrow VT\ge\dfrac{3\left(a+b+c\right)}{4}-\dfrac{2\left(a+b+c\right)}{8}\\ \Leftrightarrow VT\ge\dfrac{a+b+c}{4}\)
Dấu \("="\Leftrightarrow a=b=c=3\)
Cho a, b là các số dương thỏa mãn a + b = 3. CMR
\(\left(a+\dfrac{1}{b}\right)^2+\left(b+\dfrac{1}{a}\right)^2\ge\dfrac{169}{18}\)
Với mọi x;y dương, ta có:
\(\left(x-y\right)^2\ge0\Leftrightarrow x^2+y^2\ge2xy\Leftrightarrow2x^2+2y^2\ge x^2+y^2+2xy\)
\(\Leftrightarrow x^2+y^2\ge\dfrac{1}{2}\left(x+y\right)^2\)
Đồng thời \(x^2+y^2\ge2xy\Rightarrow x^2+y^2+2xy\ge4xy\Rightarrow\left(x+y\right)^2\ge4xy\)
\(\Rightarrow\dfrac{x+y}{xy}\ge\dfrac{4}{x+y}\Rightarrow\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)
Áp dụng: đặt vế trái của BĐT cần chứng minh là P, ta có:
\(P=\left(a+\dfrac{1}{b}\right)^2+\left(b+\dfrac{1}{a}\right)^2\ge\dfrac{1}{2}\left(a+\dfrac{1}{b}+b+\dfrac{1}{a}\right)^2=\dfrac{1}{2}\left(a+b+\dfrac{1}{a}+\dfrac{1}{b}\right)^2\)
\(P\ge\dfrac{1}{2}\left(a+b+\dfrac{4}{a+b}\right)^2=\dfrac{1}{2}\left(3+\dfrac{4}{3}\right)^2=\dfrac{169}{18}\)
Dấu "=" xảy ra khi \(a=b=\dfrac{3}{2}\)
cho a,b,c là các số dương thõa mản abc=1 CMR: \(\dfrac{1}{a^2\left(b+c\right)}+\dfrac{1}{b^2\left(c+a\right)}+\dfrac{1}{C^2\left(a+b\right)}\ge\dfrac{3}{2}\)
Cho a, b, c là các số dương có abc = 8. CMR \(\dfrac{1}{\sqrt{a^3+1}}+\dfrac{1}{\sqrt{b^3+1}}+\dfrac{1}{\sqrt{c^3+1}}\ge1\)
\(\dfrac{1}{\sqrt{a^3+1}}=\dfrac{1}{\sqrt{\left(a+1\right)\left(a^2-a+1\right)}}\ge\dfrac{2}{a+1+a^2-a+1}=\dfrac{2}{a^2+2}\)
\(\Rightarrow VT\ge\dfrac{2}{a^2+2}+\dfrac{2}{b^2+2}+\dfrac{2}{c^2+2}\)
Do \(abc=8\Rightarrow a^2b^2c^2=64\) , tồn tại các số thực dương x;y;z sao cho:
\(\left(a^2;b^2;c^2\right)=\left(\dfrac{4x}{y};\dfrac{4y}{z};\dfrac{4z}{x}\right)\)
\(\Rightarrow VT\ge\dfrac{2}{\dfrac{4x}{y}+2}+\dfrac{2}{\dfrac{4y}{z}+2}+\dfrac{2}{\dfrac{4z}{x}+2}=\dfrac{y}{2x+y}+\dfrac{z}{2y+z}+\dfrac{x}{2z+x}\)
\(VT\ge\dfrac{x^2}{x^2+2xz}+\dfrac{y^2}{y^2+2xy}+\dfrac{z^2}{z^2+2yz}\ge\dfrac{\left(x+y+z\right)^2}{x^2+y^2+z^2+2xy+2yz+2zx}=1\) (đpcm)
Cho a, b, c là các số thực dương thỏa mãn \(\sqrt{a}+\sqrt{b}+\sqrt{c}=1\) . Cmr
\(\sqrt{\dfrac{ab}{a+b+2c}}+\sqrt{\dfrac{bc}{c+b+2a}}+\sqrt{\dfrac{ca}{a+c+2b}}\le\dfrac{1}{2}\)
Đặt \(\left(\sqrt{a};\sqrt{b};\sqrt{c}\right)=\left(x;y;z\right)\Rightarrow x+y+z=1\)
BĐT trở thành: \(\dfrac{xy}{\sqrt{x^2+y^2+2z^2}}+\dfrac{yz}{\sqrt{y^2+z^2+2x^2}}+\dfrac{zx}{\sqrt{x^2+z^2+2y^2}}\le\dfrac{1}{2}\)
Ta có:
\(x^2+z^2+y^2+z^2\ge\dfrac{1}{2}\left(x+z\right)^2+\dfrac{1}{2}\left(y+z\right)^2\ge\left(x+z\right)\left(y+z\right)\)
\(\Rightarrow\dfrac{xy}{\sqrt{x^2+y^2+2z^2}}\le\dfrac{xy}{\sqrt{\left(x+z\right)\left(y+z\right)}}\le\dfrac{1}{2}\left(\dfrac{xy}{x+z}+\dfrac{xy}{y+z}\right)\)
Tương tự: \(\dfrac{yz}{\sqrt{y^2+z^2+2x^2}}\le\dfrac{1}{2}\left(\dfrac{yz}{x+y}+\dfrac{yz}{x+z}\right)\)
\(\dfrac{zx}{\sqrt{z^2+x^2+2y^2}}\le\dfrac{1}{2}\left(\dfrac{zx}{x+y}+\dfrac{zx}{y+z}\right)\)
Cộng vế với vế:
\(VT\le\dfrac{1}{2}\left(\dfrac{zx+yz}{x+y}+\dfrac{xy+zx}{y+z}+\dfrac{yz+xy}{z+x}\right)=\dfrac{1}{2}\left(x+y+z\right)=\dfrac{1}{2}\) (đpcm)
Dấu "=" xảy ra khi \(x=y=z\) hay \(a=b=c\)
cho a,b,c là các số thực dương thỏa mãn \(a+b+c+1=4abc\).CMR
\(\dfrac{a^2b}{b+2c}+\dfrac{b^2c}{c+2a}+\dfrac{c^2a}{a+2b}\ge1\)
a,b,c là các số thực dương thỏa mãn a+b+c=1. CMR: \(\dfrac{10a}{1+a^2}+\dfrac{10b}{1+b^2}+\dfrac{10c}{1+c^2}< =9\)
Với x dương, ta có đánh giá:
\(\dfrac{x}{1+x^2}\le\dfrac{36x+3}{50}\)
Thật vậy, BĐT tương đương:
\(\left(x^2+1\right)\left(36x+3\right)\ge50x\)
\(\Leftrightarrow36x^3+3x^2-14x+3\ge0\)
\(\Leftrightarrow\left(3x-1\right)^2\left(4x+3\right)\ge0\) (luôn đúng)
Áp dụng:
\(\dfrac{10a}{1+a^2}+\dfrac{10b}{1+b^2}+\dfrac{10c}{1+c^2}\le10.\dfrac{36\left(a+b+c\right)+9}{50}=9\)
Dấu "=" xảy ra khi \(a=b=c=1\)
1. cho a,b,c là các số dương .Cmr :
\(\dfrac{a^3+b^3}{ab}+\dfrac{b^3+c^3}{bc}+\dfrac{a^3+c^3}{ac}\ge2\left(a+b+c\right)\)
Chứng minh: \(x^3+y^3\ge xy\left(x+y\right)\left(1\right)\)
\(x^3+y^3\ge xy\left(x+y\right)\)
\(\Leftrightarrow\left(x+y\right)^3-3xy\left(x+y\right)\ge xy\left(x+y\right)\)
\(\Leftrightarrow\left(x+y\right)^3\ge4xy\left(x+y\right)\)
\(\Leftrightarrow\left(x+y\right)^2\ge4xy\)
\(\Leftrightarrow\left(x-y\right)^2\ge0\) đúng
\(\Rightarrow\left(1\right)\) đúng
Áp dụng BĐT \(x^3+y^3\ge xy\left(x+y\right)\)
\(\dfrac{a^3+b^3}{ab}+\dfrac{b^3+c^3}{bc}+\dfrac{c^3+a^3}{ca}\)
\(\ge\dfrac{ab\left(a+b\right)}{ab}+\dfrac{bc\left(b+c\right)}{bc}+\dfrac{ca\left(c+a\right)}{ca}\)
\(=2\left(a+b+c\right)\)