Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Big City Boy
Xem chi tiết
Trần Minh Hoàng
28 tháng 2 2021 lúc 15:57

BĐT cần chứng minh tương đương với:

\(\left(\dfrac{a}{b^2}-\dfrac{2}{b}+\dfrac{1}{a}\right)+\left(\dfrac{b}{a^2}-\dfrac{2}{a}+\dfrac{1}{b}\right)\ge4\left(\dfrac{1}{a}+\dfrac{1}{b}\right)-\dfrac{16}{a+b}\)

\(\Leftrightarrow\left(a+b\right)\left(\dfrac{1}{a}-\dfrac{1}{b}\right)^2\ge\dfrac{4\left(a-b\right)^2}{ab\left(a+b\right)}\)

\(\Leftrightarrow\dfrac{\left(a+b\right)\left(a-b\right)^2}{a^2b^2}\ge\dfrac{4\left(a-b\right)^2}{ab\left(a+b\right)}\).

\(\Leftrightarrow\left(a-b\right)^2\left[\dfrac{a+b}{a^2b^2}-\dfrac{4}{ab\left(a+b\right)}\right]\ge0\)

\(\Leftrightarrow\dfrac{\left(a-b\right)^4}{a^2b^2\left(a+b\right)}\ge0\) (luôn đúng).

 

Yeutoanhoc
28 tháng 2 2021 lúc 15:57

`a/b^2+b/a^2+16/(a+b)>=5(1/a+1/b)`

`<=>a/b^2-1/b+b^2-1/a+4(4/(a+b)-1/a-1/b)=0`

`<=>(a-b)/b^2+(b-a)/a^2+4((4ab-(a+b)^2)/(ab(a+b)))>=0`

`<=>(a^2(a-b)-b^2(a-b))/(a^2b^2)-(4(a-b)^2)/(ab(a+b))>=0`

`<=>(a-b)^2[(a+b)^2-4ab]>=0`

`<=>(a-b)^2(a^2-2ab+b^2)>=0`

`<=>(a-b)^2(a-b)^2>=0`

`<=>(a-b)^4>=0` luôn đúng.

Dấu "=" xảy ra khi `a=b`

Big City Boy
Xem chi tiết
Nguyễn Hoàng Minh
26 tháng 10 2021 lúc 20:18

Sửa \(\le\) thành \(\ge\) nha bạn

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\Leftrightarrow ab+bc+ca=abc\)

Ta có \(\dfrac{a^2}{a+bc}=\dfrac{a^3}{a^2+abc}=\dfrac{a^3}{a^2+ab+bc+ca}=\dfrac{a^3}{\left(a+b\right)\left(a+c\right)}\)

Tương tự: \(\left\{{}\begin{matrix}\dfrac{b^2}{b+ca}=\dfrac{b^3}{\left(b+a\right)\left(b+c\right)}\\\dfrac{c^2}{c+ba}=\dfrac{c^3}{\left(c+b\right)\left(c+a\right)}\end{matrix}\right.\)

Áp dụng BĐT cosi:

\(\dfrac{a^3}{\left(a+b\right)\left(a+c\right)}+\dfrac{a+b}{8}+\dfrac{a+c}{8}\ge3\sqrt[3]{\dfrac{a^3}{64}}=\dfrac{3}{4}a\)

\(\dfrac{b^3}{\left(b+a\right)\left(b+c\right)}+\dfrac{a+b}{8}+\dfrac{b+c}{8}\ge3\sqrt[3]{\dfrac{b^3}{64}}=\dfrac{3}{4}b\)

\(\dfrac{c^3}{\left(c+b\right)\left(c+a\right)}+\dfrac{b+c}{8}+\dfrac{a+c}{8}\ge3\sqrt[3]{\dfrac{c^3}{64}}=\dfrac{3}{4}c\)

Cộng VTV:

\(\Leftrightarrow VT+\dfrac{a+b}{8}+\dfrac{a+c}{8}+\dfrac{b+c}{8}\ge\dfrac{3}{4}\left(a+b+c\right)\\ \Leftrightarrow VT\ge\dfrac{3\left(a+b+c\right)}{4}-\dfrac{2\left(a+b+c\right)}{8}\\ \Leftrightarrow VT\ge\dfrac{a+b+c}{4}\)

Dấu \("="\Leftrightarrow a=b=c=3\)

Nguyễn Minh Anh
Xem chi tiết
Dark_Hole
15 tháng 3 2022 lúc 13:40

:v

Nguyễn Việt Lâm
15 tháng 3 2022 lúc 13:45

Với mọi x;y dương, ta có:

\(\left(x-y\right)^2\ge0\Leftrightarrow x^2+y^2\ge2xy\Leftrightarrow2x^2+2y^2\ge x^2+y^2+2xy\)

\(\Leftrightarrow x^2+y^2\ge\dfrac{1}{2}\left(x+y\right)^2\)

Đồng thời \(x^2+y^2\ge2xy\Rightarrow x^2+y^2+2xy\ge4xy\Rightarrow\left(x+y\right)^2\ge4xy\)

\(\Rightarrow\dfrac{x+y}{xy}\ge\dfrac{4}{x+y}\Rightarrow\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)

Áp dụng: đặt vế trái của BĐT cần chứng minh là P, ta có:

\(P=\left(a+\dfrac{1}{b}\right)^2+\left(b+\dfrac{1}{a}\right)^2\ge\dfrac{1}{2}\left(a+\dfrac{1}{b}+b+\dfrac{1}{a}\right)^2=\dfrac{1}{2}\left(a+b+\dfrac{1}{a}+\dfrac{1}{b}\right)^2\)

\(P\ge\dfrac{1}{2}\left(a+b+\dfrac{4}{a+b}\right)^2=\dfrac{1}{2}\left(3+\dfrac{4}{3}\right)^2=\dfrac{169}{18}\)

Dấu "=" xảy ra khi \(a=b=\dfrac{3}{2}\)

ra ka
Xem chi tiết
Lil Shroud
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 9 2021 lúc 18:15

\(\dfrac{1}{\sqrt{a^3+1}}=\dfrac{1}{\sqrt{\left(a+1\right)\left(a^2-a+1\right)}}\ge\dfrac{2}{a+1+a^2-a+1}=\dfrac{2}{a^2+2}\)

\(\Rightarrow VT\ge\dfrac{2}{a^2+2}+\dfrac{2}{b^2+2}+\dfrac{2}{c^2+2}\)

Do \(abc=8\Rightarrow a^2b^2c^2=64\) , tồn tại các số thực dương x;y;z sao cho:

\(\left(a^2;b^2;c^2\right)=\left(\dfrac{4x}{y};\dfrac{4y}{z};\dfrac{4z}{x}\right)\)

\(\Rightarrow VT\ge\dfrac{2}{\dfrac{4x}{y}+2}+\dfrac{2}{\dfrac{4y}{z}+2}+\dfrac{2}{\dfrac{4z}{x}+2}=\dfrac{y}{2x+y}+\dfrac{z}{2y+z}+\dfrac{x}{2z+x}\)

\(VT\ge\dfrac{x^2}{x^2+2xz}+\dfrac{y^2}{y^2+2xy}+\dfrac{z^2}{z^2+2yz}\ge\dfrac{\left(x+y+z\right)^2}{x^2+y^2+z^2+2xy+2yz+2zx}=1\) (đpcm)

Kinder
Xem chi tiết
Nguyễn Việt Lâm
8 tháng 2 2021 lúc 7:54

Đặt \(\left(\sqrt{a};\sqrt{b};\sqrt{c}\right)=\left(x;y;z\right)\Rightarrow x+y+z=1\)

BĐT trở thành: \(\dfrac{xy}{\sqrt{x^2+y^2+2z^2}}+\dfrac{yz}{\sqrt{y^2+z^2+2x^2}}+\dfrac{zx}{\sqrt{x^2+z^2+2y^2}}\le\dfrac{1}{2}\)

Ta có:

\(x^2+z^2+y^2+z^2\ge\dfrac{1}{2}\left(x+z\right)^2+\dfrac{1}{2}\left(y+z\right)^2\ge\left(x+z\right)\left(y+z\right)\)

\(\Rightarrow\dfrac{xy}{\sqrt{x^2+y^2+2z^2}}\le\dfrac{xy}{\sqrt{\left(x+z\right)\left(y+z\right)}}\le\dfrac{1}{2}\left(\dfrac{xy}{x+z}+\dfrac{xy}{y+z}\right)\)

Tương tự: \(\dfrac{yz}{\sqrt{y^2+z^2+2x^2}}\le\dfrac{1}{2}\left(\dfrac{yz}{x+y}+\dfrac{yz}{x+z}\right)\)

\(\dfrac{zx}{\sqrt{z^2+x^2+2y^2}}\le\dfrac{1}{2}\left(\dfrac{zx}{x+y}+\dfrac{zx}{y+z}\right)\)

Cộng vế với vế:

\(VT\le\dfrac{1}{2}\left(\dfrac{zx+yz}{x+y}+\dfrac{xy+zx}{y+z}+\dfrac{yz+xy}{z+x}\right)=\dfrac{1}{2}\left(x+y+z\right)=\dfrac{1}{2}\) (đpcm)

Dấu "=" xảy ra khi \(x=y=z\) hay \(a=b=c\)

dinh huong
Xem chi tiết
Thơ Nụ =))
Xem chi tiết
Nguyễn Việt Lâm
29 tháng 1 2024 lúc 22:32

Với x dương, ta có đánh giá:

\(\dfrac{x}{1+x^2}\le\dfrac{36x+3}{50}\)

Thật vậy, BĐT tương đương:

\(\left(x^2+1\right)\left(36x+3\right)\ge50x\)

\(\Leftrightarrow36x^3+3x^2-14x+3\ge0\)

\(\Leftrightarrow\left(3x-1\right)^2\left(4x+3\right)\ge0\) (luôn đúng)

Áp dụng:

\(\dfrac{10a}{1+a^2}+\dfrac{10b}{1+b^2}+\dfrac{10c}{1+c^2}\le10.\dfrac{36\left(a+b+c\right)+9}{50}=9\)

Dấu "=" xảy ra khi \(a=b=c=1\)

Rồng Xanh
Xem chi tiết
Hồng Phúc
20 tháng 1 2021 lúc 21:54

Chứng minh: \(x^3+y^3\ge xy\left(x+y\right)\left(1\right)\)

\(x^3+y^3\ge xy\left(x+y\right)\)

\(\Leftrightarrow\left(x+y\right)^3-3xy\left(x+y\right)\ge xy\left(x+y\right)\)

\(\Leftrightarrow\left(x+y\right)^3\ge4xy\left(x+y\right)\)

\(\Leftrightarrow\left(x+y\right)^2\ge4xy\)

\(\Leftrightarrow\left(x-y\right)^2\ge0\) đúng

\(\Rightarrow\left(1\right)\) đúng

Áp dụng BĐT \(x^3+y^3\ge xy\left(x+y\right)\)

\(\dfrac{a^3+b^3}{ab}+\dfrac{b^3+c^3}{bc}+\dfrac{c^3+a^3}{ca}\)

\(\ge\dfrac{ab\left(a+b\right)}{ab}+\dfrac{bc\left(b+c\right)}{bc}+\dfrac{ca\left(c+a\right)}{ca}\)

\(=2\left(a+b+c\right)\)