Cho \(a,b,c\ge0,a+b+c=3\).Tìm GTNN và GTLN:
\(P=a\sqrt{b^3+1}+b\sqrt{c^3+1}+c\sqrt{a^3+1}\)
cho a+b+c=3. Tìm GTNN của P= (a-1)3+(b-1)3+(c-1)3
cho a+b+c=1. Tìm gtnn P=a^3+b^3+c^3+a^2(b+c)+b^2(c+a)+c^2(a+b)
(Câu 3)
Cho a, b, c > 0 có ab + bc + ca = 1. Tìm GTNN \(P=\dfrac{a^3}{b^2+1}+\dfrac{b^3}{c^2+1}+\dfrac{c^3}{a^2+1}\)
\(P=\dfrac{a^3}{b^2+ab+bc+ca}+\dfrac{b^3}{c^2+ab+bc+ca}+\dfrac{c^3}{a^2+ab+bc+ca}=\dfrac{a^3}{\left(a+b\right)\left(b+c\right)}+\dfrac{b^3}{\left(a+c\right)\left(b+c\right)}+\dfrac{c^3}{\left(a+b\right)\left(a+c\right)}\)
Ta có:
\(\dfrac{a^3}{\left(a+b\right)\left(b+c\right)}+\dfrac{a+b}{8}+\dfrac{b+c}{8}\ge\dfrac{3a}{4}\)
\(\dfrac{b^3}{\left(a+c\right)\left(b+c\right)}+\dfrac{a+c}{8}+\dfrac{b+c}{8}\ge\dfrac{3b}{4}\)
\(\dfrac{c^3}{\left(a+b\right)\left(a+c\right)}+\dfrac{a+b}{8}+\dfrac{a+c}{8}\ge\dfrac{3c}{4}\)
Cộng vế:
\(P+\dfrac{a+b+c}{2}\ge\dfrac{3}{4}\left(a+b+c\right)\)
\(\Rightarrow P\ge\dfrac{1}{4}\left(a+b+c\right)\ge\dfrac{1}{4}.\sqrt{3\left(ab+bc+ca\right)}=\dfrac{\sqrt{3}}{4}\)
Cho a,b,c >0 và a=max{a,b,c} .Tìm gtnn của :
\(S=\dfrac{a}{b}+2\sqrt{1+\dfrac{b}{c}}+3\sqrt[3]{1+\dfrac{c}{a}}\)
cho a,b,c>0 và a^2+b^2+c^2=1. Tìm GTNN của P= a^3/b+2c+ b^3/c+2a+c^3/a+2b
Ta có: \(1=a^2+b^2+c^2\ge ab+bc+ca\).
\(P=\dfrac{a^3}{b+2c}+\dfrac{b^3}{c+2a}+\dfrac{c^3}{a+2b}=\dfrac{a^4}{ab+2ca}+\dfrac{b^4}{bc+2ab}+\dfrac{c^4}{ca+2bc}\)
\(\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{3\left(ab+bc+ca\right)}=\dfrac{1}{3\left(ab+bc+ca\right)}\ge\dfrac{1}{3}\)
Dấu \(=\) xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{3}}\).
1,Cho x;y thỏa mãn 2x+y=3
Tìm GTNN: M=2x^2+y^2
2,Cho 3 số a,b,c thỏa mãn a+b+c<= 3
Tìm GTNN : E=1/a+1 + 1/b+1 + 1/c+1
Em cảm ơn ạ
Áp dụng bất đẳng thức Bunyakovsky cho hai bộ số \(\left[\left(\sqrt{2}\right)^2+1\right]\) và \(\left(2x^2+y^2\right)\), ta được:
\(\left[\left(\sqrt{2}\right)^2+1^2\right]\left(2x^2+y^2\right)\ge\left(\sqrt{2}.\sqrt{2}x+1.y\right)^2\)
\(\Rightarrow\) \(3\left(2x^2+y^2\right)\ge\left(2x+y\right)^2=3^2=9\)
\(\Rightarrow\) \(2x^2+y^2\ge3\)
Dấu \("="\) xảy ra \(\Leftrightarrow\) \(\frac{\sqrt{2}}{\sqrt{2}x}=\frac{1}{y}\) \(\Leftrightarrow\) \(x=y=1\)
Tìm GTNN x(x+1)(x+2)(x+3)
GTNN của (a+b+c)(1/a+1/b+1/c) với a,b,c dương
GTNN của a^2+b^2+c^2 biết a+b+c=3/2
Giúp e với!!
a)A=x(x+1)(x+2)(x+3)
\(=\left(x^2+3x\right)\left(x^2+3x+2\right)\)
Đặt \(t=x^2+3x\) ta đc:
\(t\left(t+2\right)\)\(=t^2+2t+1-1\)
\(=\left(t+1\right)^2-1\ge-1\)
Dấu = khi \(t=-1\Rightarrow x^2+3x=-1\)\(\Rightarrow\)\(x=\frac{-3\pm\sqrt{5}}{2}\)
Vậy MinA=-1 khi \(x=\frac{-3\pm\sqrt{5}}{2}\)
b)\(B=\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Với a,b,c dương ta áp dụng Bđt Cô si 3 số:
\(a+b+c\ge3\sqrt[3]{abc}\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)
\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
Dấu = khi a=b=c
Vậy MinB=9 khi a=b=c
c)\(C=a^2+b^2+c^2\)
Áp dụng Bđt Bunhiacopski 3 cặp số ta có:
\(\left(1^2+1^2+1^2\right)\left(a^2+b^2+c^2\right)\ge\left(1a+1b+1c\right)^2=\left(\frac{3}{2}\right)^2=\frac{9}{4}\)
\(\Rightarrow3\left(a^2+b^2+c^2\right)\ge\frac{9}{4}\)
\(\Rightarrow a^2+b^2+c^2\ge\frac{3}{4}\)
\(\Rightarrow C\ge\frac{3}{4}\)
Dấu = khi \(a=b=c=\frac{1}{2}\)
Vậy MinC=\(\frac{3}{4}\) khi \(a=b=c=\frac{1}{2}\)
Cho a+b+c=1. Tìm GTNN
P=a^3+b^3+c^3+a^2(b+c)+b^2(a+c)+c^2(b+a)
GIÚP MIK NHA