cho 10k -1 chia hết cho 19(k>1), CMR 102k -1 chia hết cho 19
Cho 10 k - 1 ⋮ 19 với k > 1. Khi đó M = 10 2 k - 1 chia hết cho số nào dưới đây?
A. 9
B. 11
C. 13
D. 19
1.Cho 10k-1 chia hết cho 19 với k>11.CMR
a,102k -1 chia hết cho 19
b,103 -1chia hết cho 19
10k - 1 chia hết cho 19 nên 10k = 19m + 1
k cho mik nha Hiền xinh đẹp ^_<
cmr: tồn tại k thuộc N ; k lớn hơn 1 để 10k-1 chia hết cho 19
a﴿ 10^ k ‐ 1 chia hết cho 19 => 10 k ‐ 1 = 19n ﴾n là số tự nhiên﴿
=> 10^ k = 19n + 1 => 10^ 2k = ﴾10^ k ﴿2 = ﴾19n +1﴿2 = ﴾19n +1﴿﴾19n+1﴿ = 361n 2 + 38n + 1
=> 10 2k ‐ 1 = 361n 2 + 38n + 1 ‐ 1 = 361n 2 + 38n chia hết cho 19 => 10 2k ‐ 1 chia hết cho 19
tk nha bạn
thank you bạn
(^_^)
Một lớp học có 24 nam và 20 nữ.Có thể chia lớp này nhiều nhất thành mấy tổ sao cho số nam và nữ ở mỗi tổ bằng nhau.Lúc đó,ở mỗi tổ có bao nhiêu nam và bao nhiêu nữ?
Cho 10k-1chia hết cho 19 với k>1.Chứng tỏ 102k-1chia hết cho9.
Câu 1:
Số tổ nhiều nhất có thể chia là UCLN(24;20)
hay số tổ nhiều nhất có thể chia là 4 tổ
Câu 2:
\(10^{2k}-1=\left(10^k-1\right)\left(10^k+1\right)⋮19\)
10k-1 chia hết cho 19 với k >1
chứng minh rằng
a,102k-1 chia hết cho 19
b, 103k chia hết cho 19
a/ 10 ^2k - 1 = 10 ^ 2k - 10 ^k + 10 ^ k -1 = 10 ^k(10 ^ k - 1 ) + ( 10 ^ k - 1 ) chia hết cho 19. Bạn hay xem lại các tính chất
b/ 10^3k -1 = 10 ^ 3k - 10 ^k + 10^ k - 1 = 10 ^ k ( 10^2k - 1 ) + ( 10 ^k - 1) chia hết cho 19. xem lại bài a nha. h
nhớ tick nha
Cho 10.k-1chia hết cho 19 với k>1. CMR
a) 10^2.k - 1 chia hết cho 19
b) 10^3.k - 1 chia hết cho19
Cho 10k -1 chia hết cho 19 với k>1 CMR: 102k -1 chia hết cho 19
(10k-1)*(10k+1) cái đó mình ko hiểu lắm
Cho \(10^k\)- 1 chia hết cho 19 ( k > 1 ).CMR:
a) \(^{10^{2k}}\)-1 chia hết cho 19
b) \(10^{3k}\)-1 chia hết cho 19
CMR: có 1 số gồm toàn CS 1 chia hết cho 19
CMR tồn tại 1 số gồm CS 0 và 1 chia hết cho 2015
CMR: có thể tìm đc 1 STN K sao cho 19K - 1 chi hết cho 10
Chọn dãy
1; 11; 111; ... ;111...1 (số cuối có 20 c/s 1)
Chắc chắn trong dãy có 2 số có cùng số dư khi chia cho 19
2 số đó là
111..1(a c/s 1); 11..1(b c/s 1) [1< a < b < 20]
=>111..1 - 11..1 chia hết cho 19 [b c/s 1 - a c/s 1]
=>111...100...0 chia hết cho 19 [b - a c/s 1 ; a c/s 0]
=>11..1 x 10a chia hết cho 19 [b-a c/s 1]
Mà (19;10)=1 =>(19;10a)=1
=> 111..1 chia hết cho 19 với b-a c/s 1
Câu 3
Giả Sử: k = 4n
=>194n - 1 = (...1) - 1 = (...0) chia hết cho 10
Vậy có thể tìm đc 1 STN k chia hết cho 10
xét dãy : 191,192,...,1911
các số tự nhiên khi chia cho 10 có 10 ước là: 0,1,2,..,9
Mà dãy số trên có 11 số nên tồn tại ít nhất 2 số tn có cùng số dư khi chia cho 10
gọi 2 số đó là: 19m và 19n
(11>m>n>1 m,n=1)
19m-19n chia hết cho 10
19n.(19m-n -1) chia hết cho 10
mà (10,19)=1 (19n,10)=1
19m-n-1 chia hết cho 10
19k-1 chia hết cho 10 (k=m-n)
19k-1 chia hết cho 10q
vậy tồn tại 1 số tn k sao cho 19k-1 chia hết cho 10