Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Song Phương
Xem chi tiết
đặng văn nghĩa
10 tháng 10 2023 lúc 14:36

vãi

Nguyễn Trọng Hoàng Phúc
12 tháng 10 2023 lúc 19:57

Mày gửi cái gì vậy

Bùi Đức Huy
17 tháng 10 2023 lúc 18:27

A  Đu

Nguyễn Thu Ngà
Xem chi tiết
Akai Haruma
27 tháng 3 2021 lúc 1:54

Yêu cầu đề bài là gì vậy bạn?

Nguyễn Quốc Huy
Xem chi tiết
Akai Haruma
29 tháng 6 2021 lúc 23:19

Điều kiện của $a$ là gì vậy bạn?

Nguyễn Trọng Nghĩa
Xem chi tiết
Nguyễn Bảo Trân
25 tháng 3 2016 lúc 2:47

Đặt \(w=y-1+yi,y\in R\)

Là đủ nếu chứng minh được, tồn tại số thực duy nhất x sao cho 

\(\left(x-1\right)^2+x^2\le\left(y-1\right)^2+y^2\) với mọi \(y\in R\)

Nói cách khác, x là điểm cực tiểu hàm số :

\(f:R\rightarrow R,f\left(y\right)=\left(y-1\right)^2+y^2=2y^2-2y+1=2\left(y-\frac{1}{2}\right)^2+\frac{1}{2}\)

Do đó, điểm cực tiểu là 

\(x=\frac{1}{2}\Rightarrow z=-\frac{1}{2}+\frac{1}{2}i\)

Nguyễn Thu Ngà
Xem chi tiết
Etermintrude💫
30 tháng 3 2021 lúc 5:42

undefined

Hoàng Phúc
Xem chi tiết
alibaba nguyễn
28 tháng 11 2016 lúc 10:09

Với i = 1 thì

\(1+x_1\ge1+x_1\) (đúng)

Giả sử bất đẳng thức đúng đến i = k thì ta có

\(\left(1+x_1\right)\left(1+x_2\right)...\left(1+x_k\right)\ge1+x_1+x_2+...+x_k\)

Đặt \(1+x_1+x_2+...+x_k=y\)

\(\Rightarrow x_1+x_2+...+x_k=y-1\)

\(\Rightarrow y-1\)cùng dấu với xn

Ta chứng minh bất đẳng thức đúng với \(i=k+1\)

Ta có

\(\left(1+x_1\right)\left(1+x_2\right)...\left(1+x_k\right)\left(1+x_{k+1}\right)\ge\left(1+x_1+x_2+...+x_k\right)\left(1+x_{k+1}\right)\)

Ta chứng minh

\(\left(1+x_1+x_2+...+x_k\right)\left(1+x_{k+1}\right)\ge1+x_1+x_2+...+x_k+x_{k+1}\)

\(\Leftrightarrow y\left(1+x_{k+1}\right)\ge y+x_{k+1}\)

\(\Leftrightarrow x_{k+1}\left(y-1\right)\ge0\)

Bất đẳng thức này đúng vì \(x_{k+1};\left(y-1\right)\)là hai số cùng dấu

\(\Rightarrow\)Bất đẳng thức đúng với i = k + 1

Vậy bất đẳng thức ban đầu là đúng (phương pháp quy nạp nhé bạn)

Trần Thùy
Xem chi tiết
♥➴Hận đời FA➴♥
Xem chi tiết
Trần Thùy Dung
Xem chi tiết