\(6^{2k-1}+1\) chia hết cho 7
a)chứng minh rằng (5n+7).(4n+6) chia hết cho 2
b)(8n+1).(6m+5)
(xét n=2k , m=2k+1)
1:a,tìm các số có 3 chữ số chia hết cho 7 và tổng của các chữ số của nó cũng chia hết cho 7
b, CMR: nếu a ;a+k;a+2k là các số nguyên tố lớn hơn ba thì k chia hết cho 6
ko phải violympic toán đâu mà chỉ HSG thôi
Cho a và b là 2 số tự nhiên liên tiếp (a<b). Chứng minh a và b nguyên tố cùng nhau.
Giải:
Vì a và b là 2 số tự nhiên liên tiếp
=> a.b chia hết cho 2
Vì b>a => a có dạng 2k, b có dạng 2k+1 (k thuộc N*)
=> a.b có dạng 2k.(2k+1)
Gọi ƯCLN(2k;2k+1) = d (d thuộc N*)
=> 2k chia hết cho d ; 2k+1 chia hết cho d
=> (2k+1)-2k chia hết cho d
=> 2k+1-2k chia hết cho d
=> 1 chia hết cho d
=> d=1
=> ƯCLN(a;b)=1
=> a và b là 2 số nguyên tố cùng nhau.
Mình giải như vây có đúng không?
theo mình thế này mới đúng
Vì a < b và a và b là 2 số tự nhiên liên tiếp => b = a + 1
Gọi ƯCLN(a,b) = d
=> \(\begin{cases}a⋮d\\b⋮d\end{cases}=>\orbr{\begin{cases}a⋮d\\a+1⋮d\end{cases}}\)
=> \(a+1-a⋮d=>1⋮d\)
=> \(d\inƯ\left(1\right)=>d=1\)
Vì (a,b) = 1 => a và b là 2 số nguyên tố cùng nhau
Nếu a<b thì b=a+1 rồi làm tượng tự từ chỗ " Gọi....." thôi. Ko cần phải dài dòng như vậy đâu, bài này mk làm nhiều rồi
nhưng mình hỏi là đúng hay sai mà chứ không bảo các bạn làm cách khác
cmr
tổng 3 số nguyên lien tiếp chia hết cho 3
tổng 5 số liên tiếp chia hết cho 5
trong 2k+1 nguyên liên tiếp chia hết cho 2k +1
a, gọi ba số tự nhiên liên tiếp là a,a+1,a+2
ta có a+(a+1)+(a+2) = 3a +3 chia hết cho 3
vì 3a chia hết cho3 , 3 chia hết cho 3
suy ra ba số tự nhiên liên tiếp chia hết cho 3
b,gọi năm số liên tiếp là a ,a+1,a+2,a+3,a+4
ta có a+(a+1)+(a+2)+(a+3)+(a+4) = 5a +10 chia
hết cho 5
vì 5a chia hết cho 5 ,10 chia hết cho 5
suy ra năm số tự nhiên lien tiếp chia hết cho5
Vì 2k+1 là số lể nên trung bình cộng dãy đó là số nguyên nên tổng 2k+1 số nguyên liên tiếp =trung bình cộng 2k+1 số đó nhân 2k+1
mà 2k+1 chia hết cho 2k+1 nên tích đó chia hết cho 2k+1⇒⇒tổng 2k+1 số nguyên đầu tiên chia hết cho 2k+1
CMR: 72k -1 chia hết cho 4
a) Trong phép chia cho 2 có số dư là 0 hoặc 1.
Trong phép chia cho 4, 5, 6 số dư có thể là những số nào?
b) Dạng tổng quát của một số chia hết cho 2 là 2k , dạng tổng quát của một số chia hết cho 2 dư 1 là 2k + 1 (k là số tự nhiên).
Viết dạng tổng quát của một số chia hết cho 3, chia 3 dư 1, chia 3 dư 2.
c) Tổng quát a chia b dư r thì r có thể là số nào?
a) Số chia cho 4 có thể có dư là: 0; 1; 2; 3
Số chia cho 5 có thể có dư là: 0; 1; 2; 3; 4
Số chia cho 6 có thể có dư là: 0; 1; 2; 3; 4; 5
b) Dạng tổng quát của số chia hết cho 3 là: 3k
Dạng tổng quát của số chia hết cho 3 dư 1 là: 3k + 1
Dạng tổng quát của số chia hết cho 3 dư 2 là: 3k + 2
( Với k ∈ N)
Cho a và b là 2 số tự nhiên liên tiếp (a<b). Chứng minh a và b nguyên tố cùng nhau.
Giải:
Vì a và b là 2 số tự nhiên liên tiếp
=> a.b chia hết cho 2
Vì b>a => a có dạng 2k, b có dạng 2k+1 (k thuộc N*)
=> a.b có dạng 2k.(2k+1)
Gọi ƯCLN(2k;2k+1) = d (d thuộc N*)
=> 2k chia hết cho d ; 2k+1 chia hết cho d
=> (2k+1)-2k chia hết cho d
=> 2k+1-2k chia hết cho d
=> 1 chia hết cho d
=> d=1
=> ƯCLN(a;b)=1
=> a và b là 2 số nguyên tố cùng nhau.
Mình giải như vây có đúng không?
a cũng có thể là \(2k+1\Rightarrow b=2k+2\), bạn làm thiếu.
Nói chung, bài toán giống như đi từ trong nhà ra cổng. Thay vì đi thẳng ra ngoài cổng, việc bạn làm giống như đi vài vòng quanh vườn xong mới chịu ra cổng vậy :D
Làm thế này có phải đơn giản, chính xác và dễ hiểu ko:
Do a và b là 2 STN liên tiếp \(\Rightarrow b=a+1\)
Gọi ƯCLN của a và b là d \(\RightarrowƯCLN\left(a;a+1\right)=d\)
\(\Rightarrow\left\{{}\begin{matrix}a⋮d\\\left(a+1\right)⋮d\end{matrix}\right.\) \(\Rightarrow\left(a+1\right)-a⋮d\Rightarrow1⋮d\Rightarrow d=1\)
\(\Rightarrow a;b\) nguyên tố cùng nhau
2k+(2k+2)+(2k+4)+(2k+6)+(2k+8) có chia hết cho 10 không vì sao?
mọi người cho e hỏi cái này tí ạ
chứng minh 1+2^2k+1+3^2k+1+...+n^2k+1 chia hết (2k+1)^2 với n=2k+1