tìm nghiệm nguyên của pt \(6x^2y^3+3x^2-10y^3=-2\)
Tìm nghiệm nguyên của phương trình:
\(6x^2y^3+3x^2-10y^3=-2\)
\(6x^2y^4+3x^2-10y^3=-2\)
\(\Leftrightarrow3x^2\left(2y^3+1\right)-10y^3-5+5=-2\)
\(\Leftrightarrow3x^2\left(2y^3+1\right)-5\left(2y^3+1\right)=-7\)
\(\Leftrightarrow\left(3x^2-5\right)\left(2y^3+1\right)=-7\)
\(\Rightarrow\left(3x^2-5\right);\left(2y^3+1\right)\in\left\{-1;1;-7;7\right\}\)
\(\Rightarrow\left(x;y\right)\in\left\{\left(\pm\dfrac{2}{\sqrt[]{3}};\sqrt[3]{3}\right);\left(\pm\sqrt[]{2};\sqrt[3]{4}\right);\left(\varnothing;0\right);\left(\pm2;-1\right)\right\}\)
\(\Rightarrow\left(x;y\right)\in\left\{\left(\pm2;-1\right)\right\}\left(x;y\in Z\right)\)
6x2y3 +3x2 - 10y3 = -2
\(_{_{ }^{ }\Leftrightarrow}\) 2y3(3x2 \(-\) 2) + 3x2 \(-\) 2= -4
\(_{_{ }^{ }\Leftrightarrow}\)\(\left(3x^2-2\right)\left(2y^3+1\right)=-4=-1.4=-2.2\)
Vì x2 \(\ge\)0 nên 3x2 -2 \(\ge\)-2
Ta có các trường hợp:
TH1: \(\left\{{}\begin{matrix}3x^2-2=-1\\2y^3+1=4\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x=\pm\dfrac{1}{\sqrt{3}}\\y=\sqrt[3]{\dfrac{3}{2}}\end{matrix}\right.\)
TH2: \(\left\{{}\begin{matrix}3x^2-2=2\\2y^3+1=-2\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x=\pm\dfrac{2}{\sqrt{3}}\\y=\sqrt[3]{\dfrac{-3}{2}}\end{matrix}\right.\)
TH3: \(\left\{{}\begin{matrix}3x^2-2=-2\\2y^3+1=2\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x=0\\y=\sqrt[3]{\dfrac{1}{2}}\end{matrix}\right.\)
Vậy .....
Tìm nghiệm nguyên của phương trình :
\(6x^2y^3+3x^2-10y^3=-2\)
Câu hỏi của cherry moon - Toán lớp 9 - Học toán với OnlineMath
\(6x^2y^3+3x^2-10y^3=-2\)
tìm nghiệm nguyên
Giải phương trình nghiệm nguyên :
\(6x^2y^3+3x^2-10y^3=-2\)
Có: \(6x^2y^3+3x^2-10y^3=-2\)
<=> \(3x^2\left(2y^3+1\right)-5\left(2y^3+1\right)+5=-2\)
<=> \(\left(2y^3+1\right)\left(3x^2-5\right)=-7\)
Th1: \(\hept{\begin{cases}2y^3+1=-7\\3x^2-5=1\end{cases}\Leftrightarrow}\hept{\begin{cases}y^3=-4\\x^2=2\end{cases}\left(loai\right)}\)
Th2: \(\hept{\begin{cases}2y^3+1=-1\\3x^2-5=7\end{cases}\Leftrightarrow}\hept{\begin{cases}y^3=-1\\x^2=4\end{cases}\Leftrightarrow}\hept{\begin{cases}y=-1\\x=\pm2\end{cases}}\)
Th3: \(\hept{\begin{cases}2y^3+1=1\\3x^2-5=-7\end{cases}\Leftrightarrow}\hept{\begin{cases}y^3=0\\x^2=-\frac{2}{3}\end{cases}\left(loai\right)}\)
Th4: \(\hept{\begin{cases}2y^3+1=7\\3x^2-5=-1\end{cases}\Leftrightarrow}\hept{\begin{cases}y^3=3\\x^2=\frac{4}{3}\end{cases}\left(loai\right)}\)
Vậy phương trình có nghiệm: ( -2;-1) và ( 2; -1)
Tìm nghiệm nguyên x, y của pt: \(6x^2+10y^2+2xy-x-28y+18=0\)
\(6x^2+\left(2y-1\right)x+10y^2-28y+18=0\)
\(\Delta=\left(2y-1\right)^2-24\left(10y^2-28y+18\right)\ge0\)
\(\Leftrightarrow-236y^2+668y-431\ge0\)
\(\Rightarrow\dfrac{167-2\sqrt{615}}{118}\le y\le\dfrac{167+2\sqrt{615}}{118}\)
\(\Rightarrow y=1\)
Thế vào pt đầu ...
tìm nghiệm nguyên của pt
1.\(\left(xy-7\right)^2=x^2+y^2\)
2.\(x^2=y^2+2y+13\)
3.\(2x^2+y^2+3xy+3x+2y+2\)
4.\(x^2-3y^2+2xy-2x-10y+4=0\)
1/ tìm x,y nguyên dương thỏa mãn: \(x^2-y^2+2x-4y-10=0\)0
2/giải pt nghiệm nguyên :\(x^2+2y^2+3xy+3x+5y=15\)
3/tìm các số nguyên x;y thỏa mãn:\(x^3+3x=x^2y+2y+5\)
4/tìm tất cả các nghiệm nguyên dương x,y thỏa mãn pt:\(5x+7y=112\)
tìm nghiệm nguyên của pt 6x2+19y2+24x-2y+12xy-725
6x2+19y2+24x-2y+12xy-725=0
\(\Leftrightarrow6x^2+\left(12y+24\right)x-2y+19y^2-725=0\)
\(\Leftrightarrow\Delta=\left(12y+24\right)^2-4.6.\left(-2y+19y^2-725\right)\)
\(\Leftrightarrow144y^2+576y+576+48y-456y^2+17400\)
bữa sau sẽ trả lời tiếp
Với \(x,y\in Z\)
\(6x^2+19y^2+24x-2y+12xy-725=0\)
\(\Leftrightarrow6x^2+\left(12xy+24x\right)+19y^2-2y-725=0\)
\(\Leftrightarrow6x^2+\left(12y+24\right)x+19y^2-2y-725=0\)
\(\Leftrightarrow6x^2+2\left(6y+12\right)x+19y^2-2y-725=0\) \(\left(a=6,b'=6y+12,c=19y^2-2y-725\right)\)
\(\Delta'=\left(6y+12\right)^2-6\left(19y^2-2y-725\right)=36y^2+144y+144-114y^2+12y+4350\)
\(\Delta'=-78y^2+156y+4494=-78\left(y^2-2y+1\right)+78+4494=-78\left(y-1\right)^2+4572\)
PT có nghiệm \(\Leftrightarrow\Delta'\ge0\Leftrightarrow-78\left(y-1\right)^2+4572\ge0\Leftrightarrow-78\left(y-1\right)^2\ge-4572\)
\(\Leftrightarrow\left(y-1\right)^2\le\frac{762}{13}\)
\(\Leftrightarrow-\frac{\sqrt{9906}}{13}\le y-1\le\frac{\sqrt{9906}}{13}\), mà \(y\in Z\) \(\Rightarrow-7\le y-1\le7\left(1\right)\)
Với PT có nghiệm, ta có: \(x=\frac{-b'\pm\sqrt{\Delta'}}{a}\)
\(\hept{\begin{cases}x_1+x_2=\frac{-b}{a}=\frac{-\left(12y+24\right)}{6}=-2y-4\\x_1x_2=\frac{c}{a}=\frac{19y^2-2y-725}{6}=\frac{y^2-2y+1+18y^2-726}{6}=3y^2-121+\frac{\left(y-1\right)^2}{6}\end{cases}}\)
Để \(x\in Z\), thì \(\hept{\begin{cases}x_1+x_2\in Z\\x_1x_2\in Z\end{cases}}\Leftrightarrow\hept{\begin{cases}-2y-4\in Z\\3y^2-121+\frac{\left(y-1\right)^2}{6}\in Z\end{cases}\Leftrightarrow}\frac{\left(y-1\right)^2}{6}\in Z\) (vì \(y\in Z\))
Và \(\Delta'\) là số chính phương.
* \(\frac{\left(y-1\right)^2}{6}\in Z\Leftrightarrow\left(y-1\right)^2⋮6\Leftrightarrow y-1⋮6\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) \(\Rightarrow y-1\in\left\{-6;0;6\right\}\Leftrightarrow y\in\left\{-5;1;7\right\}\)
* \(\Delta'\) là số chính phương \(\Leftrightarrow-78\left(y-1\right)^2+4572\) là số chính phương
- Thử \(y=-5\), thì \(\Delta'=-78\left(-5-1\right)^2+4572=-2808+4572=1764\) (1764 là số chính phương)
- Thử \(y=1\), thì \(\Delta'=-78\left(1-1\right)^2+4572=4572\) (4572 không phải là số chính phương)
- Thử \(y=7\), thì \(\Delta'=-78\left(7-1\right)^2+4572=-2808+4572=1764\) (1764 là số chính phương)
Từ đó, với \(y\in\left\{-5;7\right\}\) thì \(\Delta'=1764\) là số chính phương. \(\Rightarrow\sqrt{\Delta'}=42\)
PT có nghiệm thì:
\(x=\frac{-b'\pm\sqrt{\Delta'}}{a}=\frac{-6y-12\pm42}{6}=-y-2\pm7\)
- Với \(y=-5\), thì \(x=5-2\pm7\Leftrightarrow x\in\left\{-4;10\right\}\) (tmđk)
- Với \(y=7\), thì \(x=-7-2\pm7\Leftrightarrow x\in\left\{-16;-2\right\}\) (tmđk)
Vậy phương trình có các nghiệm nguyên \(\left(x;y\right)=\left(-4;-5\right),\left(10;-5\right),\left(-16;7\right),\left(-2;7\right)\).
cho pt: \(x^2+3x+2m=0\)
và \(x^2+6x+5m=0\)
tìm tất cả giá trị m nguyên để 2 phương trình đều có 2 nghiệm phân biệt và giữa 2 nghiệm của pt này có đúng 1 nghiệm của pt kia
\(\left\{{}\begin{matrix}9-8m>0\\9-5m>0\end{matrix}\right.\) \(\Rightarrow m< \dfrac{9}{8}\)
Gọi a là nghiệm chung của 2 pt
\(\Rightarrow\left\{{}\begin{matrix}a^2+3a+2m=0\\a^2+6a+5m=0\end{matrix}\right.\)
\(\Rightarrow3a+3m=0\Rightarrow a=-m\)
Thay vào 2 pt ban đầu:
\(\Rightarrow\left\{{}\begin{matrix}m^2-3m+2m=0\\m^2-6m+5m=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=0\\m=1\end{matrix}\right.\)