chứng minh rằng: phương trình \(2x^2\sqrt{x-2}=11\) có nghiệm duy nhất
a) Chứng minh rằng \(\forall\) x, phương trình sau vô nghiệm
\(\left|x-1\right|+\left|2-x\right|=-4x^2+12x-10\)
b)Cho phương trình: \(m^2+m^2x=4m+21-3mx\) (x là ẩn)
Tìm m để phương trình trên có nghiệm dương duy nhất.
\(VT=\left|x-1\right|+\left|2-x\right|\ge\left|x-1+2-x\right|=1\)
\(VP=-4x^2+12x-9-1=-\left(2x-3\right)^2-1\le-1\)
\(\Rightarrow VT>VP\) ; \(\forall x\)
\(\Rightarrow\) Pt đã cho luôn luôn vô nghiệm
b.
\(\Leftrightarrow\left(m^2+3m\right)x=-m^2+4m+21\)
\(\Leftrightarrow m\left(m+3\right)x=\left(7-m\right)\left(m+3\right)\)
Để pt có nghiệm duy nhất \(\Rightarrow m\left(m+3\right)\ne0\Rightarrow m\ne\left\{0;-3\right\}\)
Khi đó ta có: \(x=\dfrac{\left(7-m\right)\left(m+3\right)}{m\left(m+3\right)}=\dfrac{7-m}{m}\)
Để nghiệm pt dương
\(\Leftrightarrow\dfrac{7-m}{m}>0\Leftrightarrow0< m< 7\)
Chứng minh rằng chỉ có duy nhất một cặp số(x;y) thỏa mãn phương trình
9x - 12\(\sqrt{x}\) - 2\(\sqrt{7}\) y + y2 +11 =0
Cho hệ phương trình : \(\hept{\begin{cases}6x+2y=\frac{m^6}{x^2}\\6y+2x=\frac{m^6}{y^2}\end{cases}}\)
a) Giải hệ phương trình với m=1
b) Chứng minh rằng hệ phương trình có nghiệm duy nhất
Cho phương trình \(\dfrac{3x^2-1}{\sqrt{2x-1}}=\sqrt{2x-1}+mx\) . tìm m để phương trình có nghiệm duy nhất
Cho hệ phương trình\(\left\{{}\begin{matrix}ax-y=2\\x+ay=3\end{matrix}\right.\) .
Chứng minh rằng với mọi a thì hệ có nghiệm duy nhất. Tìm nghiệm đó.
Từ pt (1) ta có: y=ax-2 thế vào pt (2) ta được:
\(x+a\left(ax-2\right)=3\)
\(\Leftrightarrow x+a^2x-2a=3\)
\(\Leftrightarrow\left(a^2+1\right)x=2a+3\)
\(\Leftrightarrow x=\dfrac{2a+3}{a^2+1}\) (Vì \(a^2+1\ne0\))
\(\Rightarrow y=a\cdot\dfrac{2a+3}{a^2+1}-2=\dfrac{3a-2}{a^2+1}\)
Vậy với mọi a hệ có nghiệm duy nhất là \(\left(x;y\right)=\left(\dfrac{2a+3}{a^2+1};\dfrac{3a-2}{a^2+1}\right)\)
Cho phương trình 3x+19=y2 với x, y là các số nguyên dương
a, Tìm cặp (x;y) là nghiệm của phương trình mà x là số nguyên nhỏ nhất
b,Chứng minh rằng phương trình có nghiệm duy nhất
Cho phương trình 3x+19=y2 với x, y là các số nguyên dương
a, Tìm cặp (x;y) là nghiệm của phương trình mà x là số nguyên nhỏ nhất
b,Chứng minh rằng phương trình có nghiệm duy nhất
a)
x | 1 | 2 | 3 | 4 | 5 | 6 |
y | \(\sqrt{22}\)(loại | \(2\sqrt{7}\)(loại) | \(\sqrt{46}\)(loại) | 10(thoả mãn) | \(\sqrt{262}\) |
\(\Rightarrow\left(x,y\right)=\left(4;10\right)\)
chứng minh rằng phương trình (m²-m+1)x⁴-2x³-1=0 có ít nhất 2 nghiệm /(-5;5)
Đặt \(f\left(x\right)=\left(m^2-m+1\right)x^4-3x^3-1\)
\(f\left(x\right)\) là hàm đa thức nên liên tục trên mọi khoảng trên R
\(f\left(0\right)=-1< 0\)
\(f\left(3\right)=81\left(m^2-m+1\right)-55=81\left(m-\dfrac{1}{2}\right)^2+\dfrac{23}{4}>0\)
\(\Rightarrow f\left(0\right).f\left(3\right)< 0\Rightarrow\) pt có ít nhất 1 nghiệm thuộc \(\left(0;3\right)\)
\(f\left(-1\right)=m^2-m+2=\left(m-\dfrac{1}{2}\right)^2+\dfrac{7}{4}>0\)
\(\Rightarrow f\left(-1\right).f\left(0\right)< 0\Rightarrow\) pt có ít nhất 1 nghiệm thuộc \(\left(-1;0\right)\)
\(\Rightarrow\) Pt có ít nhất 2 nghiệm thuộc \(\left(-1;3\right)\Rightarrow\) có ít nhất 2 nghiệm trên \(\left(-5;5\right)\)
\(\hept{\begin{cases}2x-my=-3\\mx+3y=4\end{cases}}\)Cho hệ phương trình : 1 . Chứng minh rằng hệ phương trình luôn có nghiệm duy nhất khi m thay đổi
2 . Tìm giá trị nguyên lớn nhất của m để hệ có nghiệm ( x0;y0) thỏa mãn
giúp em với bài tập Tết ạ ! k làm cô giết em