\(\left(\sqrt{28}-2\sqrt{14}+\sqrt{7}\right).\sqrt{7}+7\sqrt{7}\)
\(\left(\sqrt{28}-2\sqrt{14}+\sqrt{7}\right).\sqrt{7}+7\sqrt{8}\)
\(=14-14\sqrt{2}+7+14\sqrt{2}=21\)
Bài 1:Tìn ĐKXĐ
a.\(\sqrt{\dfrac{2}{^{^{^{ }}}x^2}}\)
b.\(\sqrt{\dfrac{-3}{3x+5}}\)
Bài 2:
a.\(\dfrac{2+\sqrt{2}}{1+\sqrt{2}}\)
b.\(\left(\sqrt{28}-2\sqrt{14}+\sqrt{7}\right)\sqrt{7}+7\sqrt{8}\)
c,\(\left(\sqrt{14}-3\sqrt{2}\right)^2+6\sqrt{28}\)
Trả lời giúp mình với ạ!Mình cảm ơn nhiều!
Bài 1:
a. Ta có \(\sqrt{\dfrac{2}{x^2}}=\dfrac{\sqrt{2}}{\left|x\right|}=\dfrac{\sqrt{2}}{x}\) ,để biểu thức có nghĩa thì \(x>0\)
b. Để biểu thức \(\sqrt{\dfrac{-3}{3x+5}}\) có nghĩa thì \(\dfrac{-3}{3x+5}\ge0\)
mà \(-3< 0\Rightarrow3x+5< 0\) \(\Rightarrow x< \dfrac{-5}{3}\)
Bài 2:
a. \(\dfrac{2+\sqrt{2}}{1+\sqrt{2}}=\dfrac{\left(2+\sqrt{2}\right)\left(1-\sqrt{2}\right)}{1-2}=\dfrac{-\sqrt{2}}{-1}=\sqrt{2}\)
b. \(\left(\sqrt{28}-2\sqrt{14}+\sqrt{7}\right)\sqrt{7}+7\sqrt{8}\)
\(=14-14\sqrt{2}+7+14\sqrt{2}\)
\(=21\)
c. \(\left(\sqrt{14}-3\sqrt{2}\right)^2+6\sqrt{28}\)
\(=14-6\sqrt{28}+18+6\sqrt{28}\)
\(=32\)
rút gọn
A=\(\left(\sqrt{28}-2\sqrt{14}+\sqrt{7}\right)\cdot\sqrt{7}+7\sqrt{8}\)
B=\(\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}\)
C=\(\left(\sqrt{7}-\sqrt{10}\right)^2+\sqrt{280}\)
D=\(\dfrac{\sqrt{99}}{\sqrt{11}}+\sqrt{7}\cdot\sqrt{63}-\sqrt{\sqrt{81}}\)
E=\(\sqrt{27}\left(s-\sqrt{5}\right)^2\cdot\left(3\sqrt{48}\right)\)
giải chi tiết ra giúp mik nha,cảm ơn nhiều
rút gọn
\(\left(\sqrt{28}-2\sqrt{14}+\sqrt{7}\right).\sqrt{7}+7\sqrt{8}\)
giúp mink vs ạ
\(\left(\sqrt{28}-2\sqrt{14}+\sqrt{7}\right)\cdot\sqrt{7}+7\sqrt{8}\)
\(=\left(3\sqrt{7}-2\sqrt{14}\right)\cdot\sqrt{7}+14\sqrt{2}\)
\(=21-14\sqrt{2}+14\sqrt{2}\)
=21
\(\left(\sqrt{28}-2\sqrt{14}+\sqrt{7}\right)\sqrt{7}+7\sqrt{8}\)
Bạn ơi ! Cho mình hỏi,đề bài yêu cầu gì vậy bạn ?
\(\left(\sqrt{28}-2\sqrt{14}+\sqrt{7}\right)\sqrt{7}+7\sqrt{8}\)
\(=\left(2\sqrt{7}-2\sqrt{14}+\sqrt{7}\right)\sqrt{7}+7\sqrt{8}\)
\(=14-14\sqrt{2}+7+7\sqrt{8}\)
\(=21-14\sqrt{2}+14\sqrt{2}=21\)
Tính
1.\(\left(\sqrt{28}-2\sqrt{14}+\sqrt{7}\right).\sqrt{7}+7\sqrt{8}\)
2. \(\left(\sqrt{8}-\sqrt{2}-\sqrt{5}\right)\left(\sqrt{18}-\sqrt{8}+\sqrt{5}\right)\)
1) \(\left(\sqrt{28}-2\sqrt{14}+\sqrt{7}\right).\sqrt{7}+7\sqrt{8}\)
Xin lỗi xin lỗi :v
1)\(\left(\sqrt{28}-2\sqrt{14}+\sqrt{7}\right).\sqrt{7}+7\sqrt{8}\)
= \(\sqrt{7}.\left(3\sqrt{7}-2\sqrt{14}\right)+14\sqrt{2}\)
= 21 - \(14\sqrt{2}+14\sqrt{2}\)
= 21
2) \(\left(\sqrt{8}-\sqrt{2}-\sqrt{5}\right)\left(\sqrt{18}-\sqrt{8}+\sqrt{5}\right)\)
= \(\left(2\sqrt{2}-\sqrt{2}-\sqrt{5}\right)\left(3\sqrt{2}+\sqrt{5}-2\sqrt{2}\right)\)
= \(\left(\sqrt{2}-\sqrt{5}\right)\left(\sqrt{2}+\sqrt{5}\right)\)
=\(\left(\sqrt{2}\right)^2-\left(\sqrt{5}\right)^2\)
= -3
Rút gọn các biểu thức sau:
a) \(\left(\sqrt{8}-3\sqrt{2}+\sqrt{10}\right)\left(\sqrt{2}-3\sqrt{0,4}\right)\) b) \(\left(\sqrt{28}-2\sqrt{14}+\sqrt{7}\right).\sqrt{7}+7\sqrt{8}\)
c) \(2\sqrt{\left(\sqrt{2}-3\right)^2}+\sqrt{2\left(-3\right)^2}-5\sqrt{\left(-1\right)^4}\) d) \(\left(\frac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}+\frac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}\right):\frac{1}{\sqrt{7}-\sqrt{5}}\)
rút gọn: \(\left(\sqrt{28}-2\sqrt{14}+\sqrt{7}\right)\sqrt{7}+7\sqrt{8}\)
Lời giải:
\((\sqrt{28}-2\sqrt{14}+\sqrt{7})\sqrt{7}+7\sqrt{8}\)
\(=(2\sqrt{7}-2\sqrt{2}.\sqrt{7}+\sqrt{7})\sqrt{7}+14\sqrt{2}\)
\(=\sqrt{7}(2-2\sqrt{2}+1).\sqrt{7}+14\sqrt{2}\)
\(=7(3-2\sqrt{2})+14\sqrt{2}=21-14\sqrt{2}+14\sqrt{2}=21\)
Câu 1
1) Tính
a) \(\sqrt{25}+\sqrt{49}\) b) \(\sqrt{121}-\sqrt{81}\)
2) Với x > -2 thì \(\sqrt{2x+1}\) có nghĩa không
3) Rút gọn biểu thức sau :
a) \(\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{3}\) b) \(\left(\sqrt{28}-2\sqrt{14}+\sqrt{7}\right)\sqrt{7}+7\sqrt{8}\) c) \(\dfrac{\sqrt{27}-\sqrt{108}+\sqrt{12}}{\sqrt{3}}\)
1:
a: \(\sqrt{25}+\sqrt{49}=5+7=12\)
b: \(\sqrt{121}-\sqrt{81}=11-9=2\)
2: x>-2
=>2x>-4
=>2x+1>-3
=>Với x>-2 thì \(\sqrt{2x+1}\) chưa chắc có nghĩa
3:
a: \(\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{3}\)
\(=\left|\sqrt{3}-1\right|-\sqrt{3}\)
\(=\sqrt{3}-1-\sqrt{3}=-1\)
b: \(\left(\sqrt{28}-2\sqrt{14}+\sqrt{7}\right)\cdot\sqrt{7}+7\sqrt{8}\)
\(=\left(3\sqrt{7}-2\sqrt{14}\right)\cdot\sqrt{7}+14\sqrt{2}\)
\(=21-14\sqrt{2}+14\sqrt{2}=21\)
c:
\(\dfrac{\sqrt{27}-\sqrt{108}+\sqrt{12}}{\sqrt{3}}\)
\(=\dfrac{3\sqrt{3}-6\sqrt{3}+2\sqrt{3}}{\sqrt{3}}=3+2-6=-1\)