cho tam giác abc vuông tại c có ab = 5cm, oc=3cm, dụng đường tròn (o;oc). qua điểm c kẻ đường thẳng vuông góc với ao tại h và cắt đường tròn tâm o tại b. tính ac, ch, CM AB là tiếp tuyến của(O:OC).
1. Cho tam giác ABC nội tiếp đường tròn tâm O, bán kính R = 3cm. Tính diện tích hình quạt tạo bởi hai bán kính OB,OC và cung nhỏ BC khi \(\widehat{BAC}=60^o\)
2. Cho tam giác ABC vuông tại A có AB=6cm, AC=8cm nội tiếp đường tròn (O). Tính diện tích hình tròn (O)
2: ΔABC vuông tại A nội tiếp (O)
=>O là trung điểm của BC
BC=căn 6^2+8^2=10cm
=>OB=OC=10/2=5cm
S=5^2*3,14=78,5cm2
Cho tam giác ABC vuông tại A có AB = 4cm, AC=3cm, đường cao AH. Vẽ đường tròn tâm C, bán kính CA. Đường thẳng AH cắt đường trong (C) tại điểm thứ 2 là D Cho tam giác ABC vuông tại A có AB=4cm, AC=3cm, đường cao AH. Vẽ đường tròn tâm C, bán kính CA. Đường thẳng AH cắt đường trong (C) tại điểm thứ 2 là D. a) Tính độ dài đoạn thẳng AH b) Chứng minh BD là tiếp tuyến của đường tròn (C) c) Qua C kẻ đường thẳng vuông góc với BC cắt các tia BA,BD thứ tự E,F. Trên cung nhỏ AD của (C) lấy điểm M bất kỳ, qua M kẻ tiếp tuyến với (C) cắt AB,BD lần lượt tại P,Q. Chứng minh EF bình phương =4PE.QF
a:\(BC=\sqrt{4^2+3^2}=5\left(cm\right)\)
AH=4*3/5=2,4cm
b: ΔCAD cân tại C
mà CH là đường cao
nên CH là phân giác của góc ACD
Xét ΔCAB và ΔCDB có
CA=CD
góc ACB=góc DCB
CB chung
Do dó: ΔCAB=ΔCDB
=>góc CDB=90 độ
=>BD là tiếp tuyến của (C)
Cho tam giác ABC vuông tại C có AB =5cm,ABC =60°, đường cao CK.Vẽ đường tròn tâm O đường kính CK , đường tròn (O ) cắt CB tại P (P khác C) a) Tính độ dài đoạn thẳng BC b) Chứng minh AB là tiếp tuyến của đường tròn (O) c)Tính khoảng cách từ O đến đường thẳng BC d) Từ B vẽ tiếp tuyến thứ hai BH với đường tròn (O) (H là tiếp điểm , H khác K ).Chứng minh tam giác BHP đồng dạng với tam giác BHC.
a: Xét ΔABC vuông tại C có
\(BC=AB\cdot\sin30^0=5\cdot\dfrac{1}{2}=2.5\left(cm\right)\)
Cho tam giác ABC vuông tại A. Đường tròn (O) nội tiếp tam giác ABC tiếp xúc với AB, AC lần lượt tại D và E. Tính bán kính của đường tròn (O) biết AB = 3cm, AC = 4cm.
Áp dụng định lí Pitago vào tam giác vuông ABC ta có :
B C 2 = A B 2 + A C 2 = 3 2 + 4 2 = 25
Suy ra : BC = 5 (cm)
Theo tính chất hai tiếp tuyến giao nhau ta có:
AD = AE
BD = BF
CE = CF
Mà: AD = AB – BD
AE = AC – CF
Suy ra: AD + AE = AB – BD + (AC – CF)
= AB + AC – (BD + CF)
= AB + AC – (BF + CF)
= AB + AC – BC
Suy ra:
cho tam giác vuông ABC vuông tại A , ba nử đường tròn có đường kính là AB= 3cm, AC =4cm , BC= 5cm , Tính diện tích phần gạch chéo
giúp mik giải nhé
diện tích hình tròn có đường kính là 5 cm là:5:2*5:2*3,14=19,625(cm2).diện tích hình tam giác là:3*4:2=6(cm2).diện tích hai ửa hình tròn nhỏ là:19,625 - 6=13,625(cm2).diện tích hình tròn lớn là:(3:2*3:2*3,14)+(4:2*4:2*3,14)=19,625(cm2).diện tích phần tô đậm là:19.625 -13,625=6(cm2)
)
cho tam giác abc có ab=3cm, ac=4cm, bc=5cm. kẻ ah vuông góc với bc( h thuộc bc). a/ tam giác abc là tam giác gì? vì sao. b/ tính ah, góc b và c. c/ vẽ đường tròn( b, bh) và đường tròn ( c, ch). từ điểm a lần lượt vẽ tiếp tuyến am và an của đường tròn( b) và (c). tính góc mhn
a. \(BC^2=AB^2+AC^2\) nên ABC vuông tại A
b. Hệ thức lượng: \(AH=\dfrac{AB\cdot AC}{BC}=2,4\left(cm\right)\)
\(\sin B=\dfrac{AC}{BC}=\dfrac{4}{5}\approx\sin53^0\\ \Rightarrow\widehat{B}\approx53^0\\ \Rightarrow\widehat{C}=90^0-\widehat{B}\approx37^0\)
a:
Sửa đề tam giác DEC
Xet ΔABC vuông tại A và ΔDEC vuông tại D có
góc C chung
=>ΔABC đồng dạng với ΔDEC
b: \(BC=\sqrt{3^2+5^2}=\sqrt{34}\left(cm\right)\)
\(AD=\dfrac{2\cdot3\cdot5}{3+5}\cdot cos45=\dfrac{15\sqrt{2}}{8}\left(cm\right)\)
AD là phân giác
=>BD/AB=CD/AC
=>\(\dfrac{BD}{3}=\dfrac{CD}{5}=\dfrac{\sqrt{34}}{8}\)
=>\(BD=\dfrac{3\sqrt{34}}{8}\left(cm\right)\)
cho tam giác ABC vuông tại A, đường cao AH biết BC=10cm, góc C=30 độ
a) Tính AB,AC và AH
b) Vẽ đường tròn tâm O đường kính AB. Chứng minh H thuộc đường tròn O
c) Vẽ AI vuông góc với OC tại I và cắt đường tròn tại D. Chứng minh CD là tiếp tuyến của đừng tròn O