Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thảo Vy
Xem chi tiết
Minh Đức Vũ Công
Xem chi tiết
Mon an
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 12 2023 lúc 23:04

a: Xét tứ giác AEMF có

\(\widehat{AEM}=\widehat{AFM}=\widehat{FAE}=90^0\)

=>AEMF là hình chữ nhật

b: ta có: MF\(\perp\)AC

AB\(\perp\)AC

Do đó: MF//AB

Xét ΔABC có

M là trung điểm của BC

MF//AB

Do đó: F là trung điểm của AC

Nguyễn Bùi Giang Sơn
Xem chi tiết
Phạm Hoàng Thảo Nguyên
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 10 2023 lúc 11:06

loading...  loading...  loading...  

loading...  

Phạm Hoàng Thảo Nguyên
Xem chi tiết
Phạm Hoàng Thảo Nguyên
Xem chi tiết
Nguyễn Ngọc Anh Minh
24 tháng 8 2023 lúc 14:52

A B C M N P E F H K

a/ 

\(MP\perp AC;NA\perp AC\) => MP//NA

\(MN\perp AB;PA\perp AB\) => MN//PA

=> ANMP là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)

Ta có \(\widehat{A}=90^o\)

=> ANMP là hình chữ nhật (hbh có 1 góc vuông là HCN)

b/

MN//PA (cmt) => MN//AC

MB=MC (gt)

=> NA=NB (trong tg đường thẳng đi qua trung điểm của 1 cạnh và // với 1 cạnh thì đi qua trung điểm cạnh còn lại)

C/m tương tự cũng có PA=PC

Ta có

MP//NA (cmt) => MP//NB

NA=NB; PA=PC => NP là đường trung bình của tg ABC

=> NP//BC => NP//MB

=> BMPN là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)

c/

Xét HCN ANMP có

FM=FA (trong HCN 2 đường chéo cắt nhau tại trung điểm mỗi đường)

EM=EB (gt)

=> EF là đường trung bình của tg MAB => EF//AB

=> ABEF là hình thang

Ta có

MB=MC => AM=MB=MC=BC/2 (trong tg vuông trung tuyến thuộc cạnh huyền bằng nửa cạnh huyền)

Ta có

FM=FA=AM/2

EB=EM=BM/2

=> FA=EB

=> ABEF là hình thang cân

d/

 

 

Phan Thái Hà
Xem chi tiết
Quỳnh Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 10 2021 lúc 23:09

1: Ta có: N và Q đối xứng nhau qua AC

nên AC là đường trung trực của NQ

Suy ra: P là trung điểm của NQ và AC\(\perp\)NQ tại P

Xét tứ giác AMNP có 

\(\widehat{PAM}=\widehat{APN}=\widehat{AMN}=90^0\)

Do đó: AMNP là hình chữ nhật

Xét ΔABC có 

N là trung điểm của BC

NP//AB

Do đó: P là trung điểm của AC

Xét tứ giác ANCQ có 

P là trung điểm của AC

P là trung điểm của NP

Do đó: ANCQ là hình bình hành

mà AC\(\perp\)NQ

nên ANCQ là hình thoi