Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đặng Công Khánh Toàn
Xem chi tiết
Đoàn Đức Hà
22 tháng 6 2021 lúc 21:42

Do đa thức chia là \(x^2-4x+3\)là đa thức bậc hai nên đa thức dư là đa thức bậc nhất, có dạng \(ax+b\).

Đặt \(P\left(x\right)=Q\left(x\right)\left(x^2-4x+3\right)+ax+b\)

\(P\left(1\right)=Q\left(1\right)\left(1-4+3\right)+a+b\Leftrightarrow a+b=3\)

\(P\left(3\right)=Q\left(3\right)\left(9-12+3\right)+3a+b\Leftrightarrow3a+b=7\)

Ta có hệ: 

\(\hept{\begin{cases}a+b=3\\3a+b=7\end{cases}}\Leftrightarrow\hept{\begin{cases}a=2\\b=1\end{cases}}\).

Vậy đa thức dư là: \(2x+1\).

Khách vãng lai đã xóa
Nguyễn Hoàng Phúc
Xem chi tiết
Nguyễn Hữu Trường Hải
13 tháng 5 2020 lúc 19:22

123456

Khách vãng lai đã xóa
Ngân Hoàng Trường
Xem chi tiết
Thành Đạt 8.3
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 12 2021 lúc 11:17

b: \(=\dfrac{2x^4-2x^3-2x^2-3x^3+3x^2+3x+x^2-x-1}{x^2-x-1}\)

\(=2x^2-3x+1\)

Nguyễn Quang Linh
Xem chi tiết
Nguyễn Quang Linh
Xem chi tiết
nguyễn Thị Hồng Thanh
17 tháng 4 2016 lúc 14:04

a2+b2=a3+b3=1 

suy ra a = 1 hoặc b = 1

suy ra a4+b4cũng =1

Nguyễn Quang Linh
17 tháng 4 2016 lúc 15:00

bạn sai rồi kìa: nếu a=1;b=1 thì a2+b2=a3+b3 <=> 1+1=1+1=2.mà đề ra là bằng 1 mà..bạn xem lại thử nhé

Mr Lazy
17 tháng 4 2016 lúc 19:56

c, theo đề ra ta có:: 

\(f\left(x\right)=\left(x-1\right).g\left(x\right)+7=\left(x+2\right).h\left(x\right)+1\)

Với \(g\left(x\right);\text{ }h\left(x\right)\) là các đa thức biến x.

\(\Rightarrow f\left(1\right)=7;\text{ }f\left(-2\right)=1\)(thay vào 2 cái biểu thức ở trên thôi)

Xét phép chia \(f\left(x\right)\) cho \(\left(x-1\right)\left(x+2\right)\)

Do đa thức chia là bậc 2 nên đa thức dư có bậc lớn nhất là 1.

Giả sử phần dư của phép chia là \(ax+b\)

Khi đó; \(f\left(x\right)=\left(x-1\right)\left(x+2\right).k\left(x\right)+ax+b\)

Với \(k\left(x\right)\) là một đa thức biến x.

Ta có: \(f\left(1\right)=\left(1-1\right).\left(1+2\right).k\left(1\right)+a+b=a+b\)

\(f\left(-2\right)=.....=-2a+b\)

Kết hợp với điều ở trên là \(f\left(1\right)=7;\text{ }f\left(-2\right)=1\), ta có hệ 2 ẩn 2 phương trình a, b

Dễ dàng giải được 

\(a=2;\text{ }b=5\)

Vậy số dư là \(r=2x+5\)

Thành Đạt 8.3
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 12 2021 lúc 22:59

a: \(=\dfrac{2x^4-2x^3-2x^2-3x^3+3x^2+3x+x^2-x-1}{x^2-x-1}\)

\(=2x^2-3x+1\)

Thành Đạt 8.3
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 12 2021 lúc 21:30

Bài 1: 

a: \(=\dfrac{2x^4-8x^3+2x^2+2x^3-8x^2+2x+18x^2-72x+18+56x-15}{x^2-4x+1}\)

\(=2x^2+2x+18+\dfrac{56x-15}{x^2-4x+1}\)

Big City Boy
Xem chi tiết
Nguyễn Việt Lâm
11 tháng 2 2021 lúc 15:46

\(f\left(x\right)\) chia \(x+1\) dư -15 \(\Rightarrow f\left(-1\right)=-15\Rightarrow-a+b=-16\)

\(f\left(x\right)\) chia \(x-3\) dư 45 \(\Rightarrow f\left(3\right)=45\Rightarrow3a+b=0\)

\(\Rightarrow\left\{{}\begin{matrix}-a+b=-16\\3a+b=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=4\\b=-12\end{matrix}\right.\)

\(f\left(x\right)=x^4-x^3-x^2+4x-12=\left(x^2-4\right)\left(x^2-x+3\right)\)

\(f\left(x\right)=0\Leftrightarrow x^2-4=0\Rightarrow x=\pm2\)