(a+b+c)^3=a^3+b^3+c^3+3[a^2(b+c)+b^2(c+a)+c^2(a+b)]+6abc
Cho a,b,c t/m (a-b)2+(b-c)2+(c-a)2=6abc
c/m: a3+b3+c3=3abc(a+b+c+1)
Đề<=>a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2=6abc
<=>a^2+b^2+c^2-ab-bc-ca=3abc
nhân cả hai vế với a+b+c+1 ta đc câu trả lời
chúc bạn học tốt
cho mình hỏi ai còn cách khác bài bạn cậu chủ họ Lương thì gợi ý giúp mình vs nhé.
tks!
giải:
Từ giả thiết \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=6abc\)
\(\Rightarrow a^2+b^2+c^2-ab-bc-ac=3abc\)(*)
Mặt khác: \(a^3+b^3+c^3-3abc\)
\(=\left(a^3+b^3\right)+c^3-3abc\)
\(=[\left(a+b\right)^3+c^3]-3a^2b-3ab^2-3abc\)
\(=\left(a+b+c\right)^3-3\left(a+b\right)^2c-3\left(a+b\right)c^2-3a^2b-3ab^2-3abc\)
\(=\left(a+b+c\right)^3-3\left(a+b\right)c\left(a+b+c\right)-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)[\left(a+b+c\right)^2-3\left(a+b\right)c-3ab]\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2+2ab+2ac+2bc-3ac-3bc-3ab\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\)
\(=\left(a+b+c\right)3abc\)(do có (*)
Cho a,b,c thỏa mãn (a - b)2 + (b - c)2 + (c - a)2 = 6abc
CMR: a3 + b3 + c3 = 3abc(a + b + c +1)
Ta có:
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=6abc\)
\(\Leftrightarrow a^2+b^2+c^2-\left(ab+bc+ac\right)=3abc\)
\(\Leftrightarrow\left(a+b+c\right)^2-3\left(ab+bc+ac\right)=3abc\)
Đặt \(\left(a+b+c,ab+bc+ac,abc\right)=\left(p,q,r\right)\)
\(\Rightarrow p^2-3q=3r\)
Khi đó \(a^3+b^3+c^3=\left(a+b+c\right)^3-3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
\(\Leftrightarrow a^3+b^3+c^3=\left(a+b+c\right)^3-3\left(a+b+c\right)\left(ab+bc+ac\right)+3abc\)
\(\Leftrightarrow a^3+b^3+c^3=p^3+3pq+3r=p\left(p^2-3q\right)+3r=3pr+3r\)
Vậy .....
Chúc bạn học tốt!
Cho (a-b)2+(b-c)2+(a-c)2=6abc
C/m: a3+b3+c3=3abc
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=6abc\)
\(\Leftrightarrow2\left(a^2+b^2+c^2-ab-bc-ca\right)=6abc\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=3abc\)
Đến đây ta chỉ cần chứng minh \(a^2+b^2+c^2-ab-bc-ca=a^3+b^3+c^3\)
Nhưng rõ ràng: \(a^3+b^3+c^3=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\ne a^2+b^2+c^2-ab-bc-ca\)
KL : Đề sai.
Cho 3 số a, b, c thỏa mãn \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=6abc\).
CMR: \(a^3+b^3+c^3=3abc\left(a+b+c\right)\).
Lời giải:
Ta có:
\((a-b)^2+(b-c)^2+(c-a)^2=6abc\)
\(\Leftrightarrow a^2+b^2+c^2-(ab+bc+ac)=3abc\)
\(\Leftrightarrow (a+b+c)^2-3(ab+bc+ac)=3abc\)
Đặt \((a+b+c,ab+bc+ac,abc)=(p,q,r)\)
\(\Rightarrow p^2-3q=3r\)
Khi đó, \(a^3+b^3+c^3=(a+b+c)^3-3(a+b)(b+c)(c+a)\)
\(\Leftrightarrow a^3+b^3+c^3=(a+b+c)^3-3(a+b+c)(ab+bc+ac)+3abc\)
\(\Leftrightarrow a^3+b^3+c^3=p^3-3pq+3r=p(p^2-3q)+3r=3pr+3r\)
Vậy \(a^3+b^3+c^3=3abc(a+b+c+1)\)
Chắc bạn viết thiếu.
Cho 3 số a,b,c thỏa mãn:
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=6abc\)
Chứng minh: \(a^3+b^3+c^3=3abc\left(a+b+c+1\right)\)
Lời giải:
Ta có:
$a^3+b^3+c^3-3abc=(a+b)^3-3ab(a+b)+c^3-3abc$
$=(a+b)^3+c^3-3ab(a+b+c)$
$=(a+b+c)[(a+b)^2-c(a+b)+c^2]-3ab(a+b+c)$
$=(a+b+c)[(a+b)^2-c(a+b)+c^2-3ab]=(a+b+c)(a^2+b^2+c^2-ab-bc-ac)$
$=\frac{1}{2}(a+b+c)(2a^2+2b^2+2c^2-2ab-2bc-2ac)$
$=\frac{1}{2}(a+b+c)[(a-b)^2+(b-c)^2+(c-a)^2]$
$=\frac{1}{2}(a+b+c).6abc=3abc(a+b+c)$
$\Rightarrow a^3+b^3+c^3=3abc(a+b+c+1)$ (đpcm)
Tìm tất cả các số nguyên không âm a;b;c thỏa mãn
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=6abc\) và
\(a^3+b^3+c^3+1⋮a+b+c+1\)
=> Theo bđt cô si ta có : B≥33√(x2+1y2 )(y2+1z2 )(z2+1x2 )
=> B≥33√2·xy ·2·yz ·2·zx =33√8=6
( Chỗ này là thay x2+1y2 ≥2√x2y2 =2·xy và 2 cái kia tương tự vào )
=> Min B=6
Mình nhầm chỗ câu b, sửa lại là :
B≥33√√(x2+1y2 )(y2+1z2 )(z2+1x2 )
Bạn làm tương tự => B≥3√2.
Giải pt
x^4 + căn(x^2+3)=3
Cho a,b,c > 0 thoả a+b+c+ab+ac+bc=6abc
Cmr 1/a^2 +1/b^2 +1/c^2 >=3
\(x^4+\sqrt{x^2+3}=3\)
\(\Leftrightarrow x^4-1+\sqrt{x^2+3}-2=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x^2+1\right)+\frac{x^2+3-4}{\sqrt{x^2+3}+2}=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x^2+1\right)+\frac{\left(x+1\right)\left(x-1\right)}{\sqrt{x^2+3}+2}=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x^2+1+\frac{1}{\sqrt{x^2+3}+2}\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)=0\)vì \(x^2+1+\frac{1}{\sqrt{x^2+3}+2}>0\)
\(\Leftrightarrow\int^{x=1}_{x=-1}\)
\(a+b+c+ab+ac+bc=6abc\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{ac}+\frac{1}{bc}=6\)
Đặt \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\left(x;y;z>0\right)\)
Ta được: \(x+y+z+xy+xz+yz=6\)
Ta đi chứng minh: \(x^2+y^2+z^2\ge3\)
Có: \(x^2+1\ge2x;y^2+1\ge2y;z^2+1\ge2z\)(Cô-si)
\(\Rightarrow x^2+y^2+z^2+3\ge2\left(x+y+z\right)\)(1)
Dấu "=" xảy ra <=> x=y=z=1
\(x^2+y^2\ge2xy;y^2+z^2\ge2yz;x^2+z^2\ge2xz\)(Cô-si)
\(\Rightarrow2x^2+2y^2+2z^2\ge2\left(xy+xz+yz\right)\)(2)
Dấu "=" xảy ra <=> x=y=z
cộng vế với vế của (1) và (2)
\(\Rightarrow3\left(x^2+y^2+z^2\right)+3\ge2\left(x+y+z+xy+xz+yz\right)=12\)
\(\Rightarrow x^2+y^2+z^2\ge3\)
Dấu "=" xảy ra <=> x=y=z=1<=>a=b=c=1
Nhớ tick nhé
Cho a,b,c >0 ; a+b+c = 6abc . Chứng minh rằng : \(\frac{bc}{a^3\left(c+2b\right)}+\frac{ac}{b^3\left(a+2c\right)}+\frac{ab}{c^3\left(b+2a\right)}\)≥2
\(a+b+c=6abc\Leftrightarrow\frac{1}{ab}+\frac{1}{ac}+\frac{1}{bc}=6\)
Đặt \(\left\{{}\begin{matrix}\frac{1}{a}=x\\\frac{1}{b}=y\\\frac{1}{c}=z\end{matrix}\right.\) \(\Rightarrow xy+xz+yz=6\)
\(P=\sum\frac{\frac{1}{yz}}{\frac{1}{x^3}\left(\frac{1}{z}+\frac{2}{y}\right)}=\sum\frac{x^3}{y+2z}=\sum\frac{x^4}{xy+2xz}\ge\frac{\left(x^2+y^2+z^2\right)^2}{3\left(xy+xz+yz\right)}\ge\frac{\left(xy+xz+yz\right)^2}{3\left(xy+xz+yz\right)}=2\)
Dấu "=" xảy ra khi \(x=y=z=\sqrt{2}\Leftrightarrow a=b=c=\frac{1}{\sqrt{2}}\)
Cho a,b,c >=0. CMR
a^3+b^3+c^3+6abc>=(a+b+c)(ab+bc+ca)
\(\Leftrightarrow a^3+b^3+c^3+6abc\ge ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)+3abc\)
\(\Leftrightarrow a^3+b^3+c^3+3abc\ge ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\)
Đây là BĐT Schur bậc 3, cách chứng minh nó có thể tìm thấy ở mọi nơi