Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyen thi mai anh
Xem chi tiết
fan FA
Xem chi tiết
Nguyễn Quỳnh Chi
Xem chi tiết
Tuấn
4 tháng 12 2016 lúc 9:20

A, gỌI h LAG HÌNH CHIẾU CỦA E TRÊN AB
XÉT CÁC CẶP TAM GIÁC ĐỒNG DẠNG aeh VÀ abc; BEH VÀ BDA , LẤY TỈ SỐ => TỔNG TRÊN = R^2 (HÌNH NHƯ THẾ :|)
B,
S(acm)+S(bdm)+S(abm)=S(cabd)
từ c kẻ đt song song với ab cắt bd tại k
dùng bđt trong tam giác =>...

Nguyễn Văn Tiến
Xem chi tiết
lê thảo duy
Xem chi tiết
lê thảo duy
Xem chi tiết
demilavoto
2 tháng 6 2017 lúc 16:01

1. Ta có ÐOMP = 900 ( vì PM ^ AB ); ÐONP = 900 (vì NP là tiếp tuyến ).

Như vậy M và N cùng nhìn OP dưới một góc bằng 900 => M và N cùng nằm trên đường tròn  đường kính OP => Tứ giác OMNP nội tiếp.

2. Tứ giác OMNP nội tiếp => ÐOPM = Ð ONM (nội tiếp chắn cung OM)

 Tam giác  ONC cân tại O vì có ON = OC = R => ÐONC = ÐOCN

=>  ÐOPM = ÐOCM.

Xét hai tam giác  OMC và MOP ta có ÐMOC = ÐOMP = 900; ÐOPM = ÐOCM => ÐCMO = ÐPOM lại có MO là cạnh chung => DOMC = DMOP => OC = MP. (1)

Theo giả thiết Ta có CD ^ AB; PM ^ AB => CO//PM (2).

Từ (1) và (2) => Tứ giác CMPO là hình bình hành.

3. Xét hai tam giác OMC và NDC ta có ÐMOC = 900 ( gt CD ^ AB); ÐDNC = 900 (nội tiếp chắn nửa đường tròn ) => ÐMOC =ÐDNC = 900 lại có ÐC là góc chung => DOMC ~DNDC

=>  => CM. CN = CO.CD mà CO = R; CD = 2R nên CO.CD = 2R2 không đổi => CM.CN =2R2không đổi hay tích CM. CN không phụ thuộc vào vị trí của điểm M.

.

Lê Thiên Hương
Xem chi tiết
Ngọc Ngọc
Xem chi tiết
Huỳnh Quang Sang
4 tháng 2 2019 lúc 10:23

Tự vẽ hình

a,a)
► Tính chất của hai tiếp tuyến cùng xuất phát từ một điểm, ta có:
AC = CM ; BD = MD
=> AC + BD = CM + MD = CD

b,Câu trên có thể cm trực tiếp bằng cách nối OC => hai tgiác ACO và MCO bằng nhau (vì tgiác vuông, có chung cạnh huyền, OA=OM=R)
=> OC là tia phân giác của góc AO^M
tương tự: OD cúng là phân giác cua góc BO^M
AO^C + CO^M + DO^M + DO^B = 180o
=> 2.CO^M + 2DO^M = 180o
=> CO^M + DO^M = CO^D = 90o

Lê Phương Uyên
Xem chi tiết