Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Kaito Kid
Xem chi tiết
Bao Nguyen Trong
Xem chi tiết
Vũ Tiến Manh
21 tháng 10 2019 lúc 9:10

quy đồng mẫu số ta được

\(\frac{\left(a-b\right)^2}{a\left(a^2-b^2\right)}+\frac{\left(a+b\right)^2}{a\left(a^2-b^2\right)}=\frac{a\left(3a-b\right)}{a\left(a^2-b^2\right)}\)<=> (a-b)2 +(a+b)2 = a(3a-b) <=> a2- ab- 2b2= 0 <=> (a+ b)(a- 2b) = 0

<=> a=-b hoăc a =2b

với a= -b => P= \(\frac{-b^3+2b^3+2b^3}{-2b^3-b^3+2b^3}=-3\)

với a =2b => P= \(\frac{\left(2b\right)^3+2.\left(2b\right)^2b+2b^3}{2.\left(2b\right)^3+2b.b^2+2b^3}=\frac{3}{2}\)

Khách vãng lai đã xóa
lý canh hy
Xem chi tiết
Lê thanh nhã
17 tháng 12 2018 lúc 22:20

Bài này dễ mà bạn

lý canh hy
17 tháng 12 2018 lúc 22:22

dễ thì bn giải hộ mk đi,nói đc lm đc nhỉ

Trần Anh Đức
Xem chi tiết
Phạm Thị Thúy Phượng
19 tháng 7 2020 lúc 9:54

cac cap tam giac co dien h bang nhau la AOB va BOC. Vi co cap song song voi nhau va cat toi diem O

Khách vãng lai đã xóa
Lãnh Hàn Thiên Kinz
19 tháng 7 2020 lúc 11:39

bạn Phạm Thị Thúy Phượng gửi nhầm bài rồi 

Khách vãng lai đã xóa
zZz Cool Kid_new zZz
19 tháng 7 2020 lúc 16:56

\(a\left(2a-1\right)+b\left(2b-1\right)=2ab\)

\(\Leftrightarrow2a^2+2b^2-a-b=2ab\le\frac{\left(a+b\right)^2}{2}\)

Mà \(2a^2+2b^2\ge\left(a+b\right)^2\)

Đặt \(a+b=t\Rightarrow t^2-t\le\frac{t^2}{2}\Leftrightarrow t^2-t\le0\Leftrightarrow t\le1\Rightarrow a+b\le1\)

\(F=\frac{a^3+2020}{b}+\frac{b^3+2020}{a}=\frac{a^3}{b}+\frac{b^3}{a}+2020\left(\frac{1}{a}+\frac{1}{b}\right)\)

\(=\frac{a^4+b^4}{ab}+2020\left(\frac{1}{a}+\frac{1}{b}\right)\ge\frac{\left(a+b\right)^4}{2\left(a+b\right)^2}+\frac{8080}{a+b}\)

\(=\frac{\left(a+b\right)^2}{2}+\frac{8080}{a+b}=\frac{\left(a+b\right)^2}{2}+\frac{1}{2\left(a+b\right)}+\frac{1}{2\left(a+b\right)}+\frac{8079}{a+b}\)

\(\ge3\sqrt[3]{\frac{\left(a+b\right)^2}{8\left(a+b\right)^2}}+\frac{8079}{1}=\)

đoạn cuối bí nhá 

Khách vãng lai đã xóa
Hày Cưi
Xem chi tiết
Doraemon
16 tháng 11 2018 lúc 17:33

\(2a^2+\frac{1}{a^2}+\frac{b^2}{4}=4\Leftrightarrow\left(a^2+\frac{1}{a^2}-2\right)+\left(a^2+\frac{b^2}{4}-ab\right)=4-ab-2\)

\(\Leftrightarrow\left(a-\frac{1}{a}\right)^2+\left(a-\frac{b}{2}\right)^2=2-ab\)

\(VF=2-ab=\left(a-\frac{1}{a}\right)^2+\left(b-\frac{b}{2}\right)^2\ge0\)

Hay \(ab\le2\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}a=\frac{1}{a}\\b=\frac{b}{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\left(a;b\right)=\left(1;\frac{1}{2}\right)\\\left(a;b\right)=\left(-1;-\frac{1}{2}\right)\end{cases}}\)

Hày Cưi
16 tháng 11 2018 lúc 17:39

ủa bạn tìm giá trị nhỏ nhất của biểu thức S=ab+2019 mà 

Anh Mai
Xem chi tiết
Tạ Đức Hưng
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 7 2023 lúc 23:46

a^2+9ab-22b^2=0

=>a^2+11ab-2ab-2b^2=0

=>(a+11b)(a-2b)=0

=>a=2b hoặc a=-11b

TH1: a=2b

\(M=\dfrac{2b+3b}{4b-b}=\dfrac{5}{3}\)

TH2: a=-11b

\(M=\dfrac{-11b+3b}{-22b-b}=\dfrac{8}{23}\)

Trần Thị Hải Yến
Xem chi tiết
kudo shinichi
24 tháng 3 2020 lúc 19:58

\(2x^2+y^2+9=6x+2xy\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(x^2-6x+9\right)=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(x-3\right)^2=0\Leftrightarrow\hept{\begin{cases}x-3=0\\x-y=0\end{cases}}\Leftrightarrow x=y=3\)

\(\Rightarrow A=x^{2019}.y^{2020}-x^{2020}.y^{2019}+\frac{1}{9xy}=\frac{1}{27}\)

Khách vãng lai đã xóa
Pinky Phương
Xem chi tiết
QuocDat
6 tháng 2 2020 lúc 18:29

a)

(x-2)(y+1)=7

=> x-2 ; y+1 thuộc Ư(7)={-1,-7,1,7}

Ta có bảng:

x-2-1-717
y+1-7-171
x1-539
y-8-260

Vậy ta chỉ có 2 cặp x,y thõa mãn điều kiện x>y; là (1,-8) và (9,0)

b)

3x+8 chia hết cho x-1

<=> 3x-3+11 chia hết cho x-1

<=> 3(x-1)+11 chia hết cho x-1

<=> 3(x-1) chia hết x-1; 11 chia hết cho x-1

=> x-1 \(\in\)Ư(11)={-1,-11,1,11}

<=>x\(\in\){0,-10,2,12}

Khách vãng lai đã xóa