\(A=\frac{1+2+3+...+2m}{m}\) và \(B=\frac{1+2+3+...+2n}{n}\)
Biết A<B. Hãy so sánh m và n.
Giải nhanh giùm mình nhé, năm mới chúc mọi người vui vẻ!
1)Tìm 2 số m,n sao cho
2m-1 chia hết cho n
2n-1 chia hết cho m
2)cho 3 số a;b;c biết a.b.c=1
cm\(\frac{a}{a+b^2}+\frac{b}{b+c^2}+\frac{c}{c+a^2}< =\left(\frac{1}{a}.\frac{1}{b}.\frac{1}{c}\right).\frac{1}{4}\)
3)Tìm x,y nguyên :
x2+2y2+3xy-2x-4y-5=0
\(A=\frac{2+4+6+...+2m}{m};B=\frac{2+4+6+...+2n}{n}\)
SO SÁNH m VÀ n BIẾT A<B
Ta có A= (2m-2):2+1=m, B=(2n-2):2+1=n
Vì A<B suy ra m<n
Thực hiện phép tính:
a)\(\frac{4n}{2n-m}+\frac{2m}{m-2n}\)
b)\(\frac{2mn^3}{n^2-9}.\frac{n^2-6n+9}{2mn^3}\)
\(Cho: m-n+p-q \vdots 3 2m+2n+2p-2q \vdots 4 -m-3n+p-3q \vdots -6 6m+8n+2p-6q \vdots 5 Hãy tính: \frac{(2m-3q)^6+(5n-p)^4}{(9m+5n-4p+6q)^2}=? A.\frac{1}{75000} B.\frac{1}{75076} C.\frac{1}{80000} D.\frac{1}{85076}\)
Cho:
m-n+p-q \vdots 3
2m+2n+2p-2q \vdots 4
-m-3n+p-3q \vdots -6
6m+8n+2p-6q \vdots 5
Hãy tính:
\frac{(2m-3q)^6+(5n-p)^4}{(9m+5n-4p+6q)^2}=?
A.\frac{1}{75000}
B.\frac{1}{75076}
C.\frac{1}{80000}
D.\frac{1}{85076}
Quy đồng mẫu thức các phân thức sau:
\(a,\frac{2m}{m^3-n^3}\)và \(\frac{2n^2}{m^2-n^2}\)
\(b,\frac{a-d}{a^2+ab+ad+bd}\)và\(\frac{a+d}{a^2+ab-ad-bd}\)
cho \(A=\frac{5}{6}.\frac{13}{6^2}....\frac{3^{2n}+2^{2n}}{6^{2n}}\)và \(B=\frac{1}{6^{2n+1}-1}\)với n thuộc N
a) Chứng minh: \(M=\frac{A}{B}\)là số tự nhiên
b) Tìm n để M là số nguyên tố
Bài 1 : So sánh 2 biểu thức A và B,biết rằng :\(A=\frac{N}{N+1}+\frac{N+1}{N+2}\)
\(B=\frac{2n+1}{2n+3}\left(n\in Nsao\right)\)
(Giai = 2 cách)
Cách 1 :
Ta có : \(\frac{n}{n+1}>\frac{n}{2n+3}\left(1\right)\)
\(\frac{n+1}{n+2}>\frac{n+1}{2n+3}\left(2\right)\)
Cộng theo từng vế ( 1) và ( 2 ) ta được :
\(A=\frac{n}{n+1}+\frac{n+1}{n+2}>\frac{2n+1}{2n+3}=B\)
VẬY \(A>B\)
CÁCH 2
\(A=\frac{n}{n+1}+\frac{n+1}{n+2}>\frac{n}{n+2}+\frac{n+1}{n+2}\)
\(=\frac{2n+1}{n+2}>\frac{2n+1}{2n+3}\)
VẬY A>B
Chúc bạn học tốt ( -_- )
Bài 1 : Cho a, b, c khác 0. Biết x, y, z thỏa mãn:
\(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)
Tính giá trị D = x ^2017 + y^2017 + z^2017
Bài 2 : Cho \(\frac{a}{x+y}=\frac{13}{x+2};\frac{169}{\left(x+z\right)^2}=\frac{-27}{\left(z-y\right)\left(2x+y+z\right)}\)
Tính A = \(\frac{2a^3-12a^2+17a-2}{a-2}\)
bài 3 : Cho a, b, c khác nhau thỏa mãn :
\(\frac{b^2+c^2-a^2}{2bc}+\frac{c^2+a^2-b^2}{2ca}+\frac{a^2+b^2-c^2}{2ab}=1\)
Chứng minh : 2 phân thức có giá trị = 1 và 1 phân thức có giá trị = -1
Bài 4 : Cho A = \(\frac{n^3+2n^2-1}{n^3+2n^2+2n+1}\)
a, Rút gọn A
b, Cm : Nếu n thuộc Z thì A tối giản
Bài 5 : Cho n thuộc Z, n nhỏ hơn hoặc = 1
CMR : 1^3 + 2^3 + 3^3 +....+ n^3 = \(\frac{n^2\left(n+1\right)^2}{4}\)
Bài 6 : Cho M =\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)
N =\(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\)
a, Cm : nếu M = 1 thì N = 0
b, Cm : Nếu N = 0 thì có nhất thiết M = 1 ko ?
câu 1:Tìm x
(x-3)+(x-2)+(x-1)+...+(x+10)+11=11 - 72
câu 2: Cho m và n là các số nguyên dương
A = \(\frac{2+4+6+...+2m}{m}\)B = \(\frac{2+4+6+...+2n}{n}\)
Biết A < B so sánh m và n.
câu 3: Cho 16 số nguyên. Tích của 3 số bất kì luôn là một số âm. Chứng minh rằng tích của 16 số đó là một số dương
.câu 4: Cho a = -20, b - c = -5, hãy tìm A biết A2= b(a-c) - c(a-b)