Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hoàng Thiên Băng
Xem chi tiết
Lê Nguyên Hạo
28 tháng 7 2016 lúc 19:41

A = abc + bca + cab

=> A =( 100a + 10b + c)+ ( 100b + 10c + a)+( 100c + 10a+b )

=>A = 100a + 10b + c + 100b  + 10c + a + 100c + 10a + b

=> A = 111a + 111b + 111c

=> A= 111( a+b+c )= 37 . 3( a+b + c)

giả sử A là số chính phương thì A phải chứa thừa số nguyên tố 37 với số mũ chẵn nên

 3(a+b+c) chia hết 37

  => a+b+c chia hết cho 37 

Điều này không xảy ra vì           1 \(\le\) a + b + c \(\le\) 27

 A = abc + bca + cab không phải là số chính phương

tiểu_khải_219
Xem chi tiết
Le Thi Khanh Huyen
4 tháng 7 2016 lúc 11:48

Bài 1 :

 abc chia hết cho 27

\(⇒\)100a + 10b + c chia hết cho 27

\(⇒\)10(100a + 10b + c) chia hết cho 27

\(⇒\)1000a + 100b + 10c chia hết cho 27

\(⇒\)999a + (100b + 10c + a) chia hết cho 27

Mà 999a chia hết cho 27 

Vậy 100b + 10c + a = bca chia hết cho 27

Bài 2:

Gọi 2 số đó là a và b ( a >b )

Ta có:

a + b = 3 ( a - b )

a + b = 3a - 3b

a + b + 3b = 3a

b + 3b = 3a - a 

2a = 4b 

a = 2b

Thương 2 số đó là:\(\frac{a}{b}=2\)

Lâm Thanh Anh Dũng
Xem chi tiết
Tạ Trung Kiên
8 tháng 10 2023 lúc 10:10

abc chia hết cho 37 thì => 100.a + 10.b + c chia hết cho 37 
1000.a + 100.b + 10.c chia hết cho 37 
1000.a - 999.a + 100.b + 10.c chia hết cho 37 (vì 999.a chia hết cho 37) 
100.b + 10.c + a = chia hết cho 37 (bca)

Phạm Văn Gia Kỳ
Xem chi tiết
mikusanpai(՞•ﻌ•՞)
11 tháng 3 2021 lúc 21:16
Giả sử abc chia hết cho 27 thì trước hết abc phải chia hết cho 9 => a+b+c chia hết cho 9
=> bca cũng chia hết cho 9 => bca = 9m (m € N)
ta có: abc = 27k với (k € N)
abc - bca = 27k - 9m
<=> (100a + 10b + c) - (100b + 10c + a) = 9(3k-m)
<=> 99a - 90b - 9c = 9(3k - m)
<=> 11a - 10b - c + m = 3k
<=> 21a - 10(a+b+c) + 9c + m = 3k
Vế phải chia hết cho 3 mà các số: 21a ; 10(a+b+c) và 9c đều chia hết cho 3
=> m cũng chia hết cho 3
=> m = 3n (n € N)
=> bca = 9m = 27n => bca chia hết cho 27 (đpcm
👁💧👄💧👁
11 tháng 3 2021 lúc 21:18

\(\overline{abc}⋮27\\ \Rightarrow10\overline{abc}⋮27\\ \Rightarrow\overline{abc0}⋮27\\ \Rightarrow1000a+\overline{bc0}⋮27\\ \Rightarrow999a+a+\overline{bc0}⋮27\\ \Rightarrow27\cdot37\cdot a+\overline{bca}⋮27\\ \text{Mà }27\cdot37a⋮27\\ \Rightarrow\overline{bca}⋮27\)

Lưu Quang Trường
11 tháng 3 2021 lúc 21:16

Ta có: abc=bca=cba=acb

Mà abc chia hết cho 27

=> bca cũng chia hết cho 27

Skya
Xem chi tiết
Đặng Phương Thảo
15 tháng 7 2015 lúc 13:55

(abc) chia hết cho 37=> 100.a + 10.b + c chia hết cho 37 
=> 1000.a + 100.b + 10.c chia hết cho 37 
=> 1000.a - 999.a + 100.b + 10.c chia hết cho 37 (vì 999.a chia hết cho 37) 
=> 100.b + 10.c + a = (bca) chia hết cho 37 

Nguyễn Gia khánh
4 tháng 8 2016 lúc 22:14

 (abc) chia hết cho 37 ---> 100.a + 10.b + c chia hết cho 37 
---> 1000.a + 100.b + 10.c chia hết cho 37 
---> 1000.a - 999.a + 100.b + 10.c chia hết cho 37 (vì 999.a chia hết cho 37) 
---> 100.b + 10.c + a = (bca) chia hết cho 37 

(bca) chia hết cho 37 ---> 100.b+10.c+a chia hết cho 37 
---> 1000.b + 100.c + 10.a chia hết cho 37 
---> 1000.b - 999.b + 100.c + 10.a chia hết cho 37 (vì 999.b chia hết cho 37) 
---> 100.c + 10.a + b = (cab) chia hết cho 37

sakura kinomoto
20 tháng 12 2016 lúc 18:49

các bạn bài giống nhau vậy ?

LÊ THỊ NGỌC ÁNH
Xem chi tiết
Lê Hoàng Danh
25 tháng 11 2021 lúc 22:27

Số (abc) chia hết cho 37 => 100a + 10b + c chia hết cho 37 =>(Nhân 10 vô) 1000a + 100b + 10c chia hết cho 37 (1). Trừ cho 999a thì (1) vẫn chia hết cho 37 do 999 chia hết cho 37 từ đó suy ra đpcm!

Khách vãng lai đã xóa
Lê Quang Nguyên
Xem chi tiết
Trần Nguyễn Quốc Anh
20 tháng 2 2016 lúc 21:01

(abc) chia hết cho 37 ---> 100.a + 10.b + c chia hết cho 37 
---> 1000.a + 100.b + 10.c chia hết cho 37 
---> 1000.a - 999.a + 100.b + 10.c chia hết cho 37 (vì 999.a chia hết cho 37) 
---> 100.b + 10.c + a = (bca) chia hết cho 37 

(bca) chia hết cho 37 ---> 100.b+10.c+a chia hết cho 37 
---> 1000.b + 100.c + 10.a chia hết cho 37 
---> 1000.b - 999.b + 100.c + 10.a chia hết cho 37 (vì 999.b chia hết cho 37) 
---> 100.c + 10.a + b = (cab) chia hết cho 37

Nguyễn Đăng Hải
Xem chi tiết
vinh siêu nhân
Xem chi tiết
Nguyễn Hưng Phát
20 tháng 1 2016 lúc 19:09

Ta có:abc chia hết cho 27

=>abc chia hết cho 3 và 9

=>(a+b+c) chia hết cho 3 và 9

=>(b+c+a) chia hết cho 3 và 9

=>bca chia hết cho 3 và 9

=>bca chia hết cho 27

We_are_one_Nguyễn Thị Hồ...
20 tháng 1 2016 lúc 19:10

siêu nhân mà bài này chẳng làm được