tìm các số nguyên x và y thỏa mãn xy+3x+y=2
.. Tìm các cặp số nguyên (x; y) thỏa mãn: x^2-xy+3x-y=5
Tìm các cặp số nguyên (x; y) thỏa mãn: x^2-xy+3x-y=5
Tìm các cặp số nguyên (x; y) thỏa mãn: x^2-xy+3x-y=5
x2 - xy + 3x - y = 5
\(\Leftrightarrow\) x(x - y) + x - y + 2x = 5
\(\Leftrightarrow\) (x - y)(x + 1) + 2x + 2 = 7
\(\Leftrightarrow\) (x - y)(x + 1) + 2(x + 1) = 7
\(\Leftrightarrow\) (x - y + 2)(x + 1) = 7
Vì x, y \(\in\) Z nên (x - y + 2)(x + 1) \(\in\) Z
Xét các TH:
TH1: \(\left\{{}\begin{matrix}x-y+2=7\\x+1=1\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}2-y=7\\x=0\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=0\\y=-5\end{matrix}\right.\) (TM)
TH2: \(\left\{{}\begin{matrix}x-y+2=-7\\x+1=-1\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}-2-y+2=-7\\x=-2\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=-2\\y=7\end{matrix}\right.\) (TM)
TH3: \(\left\{{}\begin{matrix}x-y+2=1\\x+1=7\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}6-y+2=1\\x=6\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=6\\y=7\end{matrix}\right.\) (TM)
TH4: \(\left\{{}\begin{matrix}x-y+2=-1\\x+1=-7\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}-8-y+2=-1\\x=-8\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=-8\\y=-5\end{matrix}\right.\) (TM)
Vậy ...
Chúc bn học tốt!
Bài 4. Tìm các số nguyên x và y thỏa mãn (x+1).( y-2) =5 Bài 5. Tìm các số nguyên x và y thỏa mãn xy -2x + 3y
4:
(x+1)(y-2)=5
=>\(\left(x+1;y-2\right)\in\left\{\left(1;5\right);\left(5;1\right);\left(-1;-5\right);\left(-5;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(0;7\right);\left(4;3\right);\left(-2;-3\right);\left(-6;1\right)\right\}\)
Tìm các cặp số nguyên x, y thỏa mãn:
xy - 3x + y + 2 = 0
Tìm các cặp số nguyên (x;y) thỏa mãn : \(x^2y+xy-2x^2-3x+4=0\)
Tìm các số nguyên x,y , thỏa mãn :
xy -7y = 21 - 3x
=>y(x-7)=3(7-x)
=>y(x-7)-3(7-x)=0
=>(x-7)(y+3)=0
=>x=7 và y=-3
Tìm các cặp số nguyên ( x ; y ) thỏa mãn
a ) y ( x - 2 ) + 3x - 6 = 2
b ) xy + 3x - 2y - 7 = 0
#) Giải :
y( x -2) + 3x - 6 = 0
y( x - 2) + 3( x - 2) = 0
( y + 3 )( x - 2) = 0
\(\Rightarrow\orbr{\begin{cases}y+3=0\\x-2=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}y=-3\\x=2\end{cases}}\)
Mk cx hoq chak đâu ạ :33
#) Giải :
b) xy + 3x - 2y - 7 = 0
xy + 3x - 2y - 6 = 1
x( y + 3) -2(y + 3) = 1
( x-2)( y+3) = 1
Ta có bảng sau :
x - 2 -1 1
y+ 3 -1 1
x 1 3
y -4 -2
Vậy ( x;y) thuộc {(1;3);(-4;-2)}
Chúc bn hok tốt ạ :33
a) y(x-2) + 3x - 6 = 2
=> y(x-2) + 3(x-2) = 2
=> (x-2)(y+3) = 1.2 = (-1).(-2)
-TH1: x - 2 = 1 --> x = 3
y +3 = 2 --> y = -1
-TH2: x - 2 = (-1) --> x = 1
y + 3 = (-2) --> y = -5
-TH3: x - 2 = 2 --> x = 4
y + 3 = 1 --> y = -2
-TH4: x - 2 = (-2) --> x = 0
y + 3 = (-1) --> x = -4
Vậy...
b) xy + 3x -2y - 7 = 0
=> xy + 3x - 2y - 6 = 1
=> (xy+3x) - (2y+6) = 1
=> x(y+3) - 2(y+3) = 1
=> (y+3)(x-2) = 1
-TH1: x - 2 = 1 --> x = 3
y + 3 = 1 --> y = -2
-TH2: x - 2 = (-1) --> x = 1
y + 3 = (-1) --> y = -4
Vậy...
tìm các cặp số nguyên x y thỏa mãn xy + 3x - y - 3 = 3
Ta có: \(xy+3x-y-3=0\)
\(\Rightarrow\)xy + 3x - y = 6
=>x(y+3) - y = 6
=>x(y+3) - y - 3 = 3
=>x(y+3) - (y+3) = 3
=> (y+3)(x-1) =3
Vì x, y là các số nguyên nên y+3;x-1 là các số nguyên
Ta có bảng sau:
y+3 | -3 | -1 | 1 | 3 |
y | -6 | -4 | -2 | 0 |
x-1 | -1 | -3 | 3 | 1 |
x | 0 | -2 | 4 | 2 |
Bài giải
xy + 3x - y - 3 = 3
xy + 3x - y = 6
x ( y + 3 ) - ( y + 3 ) + 3 = 6
( x - 1 ) ( y + 3 ) = 3
Ta có bảng :
x - 1 | - 3 | - 1 | 1 | 3 |
y + 3 | - 1 | - 3 | 3 | 1 |
x | - 2 | 0 | 2 | 4 |
y | - 4 | - 6 | 0 | - 2 |
Vậy ( x , y ) = ( - 2 ; - 4 ) ; ( 0 ; - 6 ) ; ( 2 ; 0 ) ; ( 4 ; - 2 )
\(xy+3x-y-3=0\)
\(\Leftrightarrow xy+3x-y=6\)
\(\Leftrightarrow x\left(y+3\right)-\left(y+3\right)+3=6\)
\(\Leftrightarrow x\left(y+3\right)-\left(y+3\right)=3\)
\(\Leftrightarrow\left(x-1\right)\left(y+3\right)=3\)
=> x - 1; y + 3 \(\in\)Ư(3) = {1;-1;3;-3}
Tự lập bảng nhé !