cho a.b=1 chung minh rang (a^3+b^3)=(a^3+b^3)(a^2+b^2)-(a+b)
a,A=1/1^2+1/2^2+1/3^2+1/4^2+...+1/50^2.chung minh rang a<2
b;2^1+2^2+2^3+...+2^30.chung minh rang B chia het cho21
chung minh rang a-3/a+3=b-6/b+6 voi a khac -3,b khac -3 thi a/b=1/2
Cho a. b, c > 0 . Chung minh rang : 4/a + 5/b + 3/c >= 4(3/a+b + 2/b+c + 1/c+a)
Ta biến đổi 1 tí nhé
\(\frac{4}{a}+\frac{5}{b}+\frac{3}{c}\ge4\left(\frac{3}{a+b}+\frac{2}{b+c}+\frac{1}{c+a}\right)\)
\(\Leftrightarrow\frac{3}{a+b}+\frac{2}{b+c}+\frac{1}{a+c}\le\frac{1}{4}\left(\frac{4}{a}+\frac{5}{b}+\frac{3}{c}\right)\)
Tới đây dễ dàng áp dụng BĐT \(\frac{4}{x+y}\le\frac{1}{x}+\frac{1}{y}\)
\(\Leftrightarrow\frac{3}{a+b}\le\frac{3}{4}.\frac{1}{a}+\frac{3}{4}.\frac{1}{b}\left(1\right)\)
\(\Leftrightarrow\frac{2}{b+c}\le\frac{1}{2}.\frac{1}{b}+\frac{1}{2}.\frac{1}{c}\left(2\right)\)
\(\Leftrightarrow\frac{1}{a+c}\le\frac{1}{4}.\frac{1}{a}+\frac{1}{4}.\frac{1}{c}\left(3\right)\)
Cộng vế với vế của (1), (2), (3) suy ra
\(\frac{3}{a+b}+\frac{2}{b+c}+\frac{1}{a+c}\le\frac{3}{4}\cdot\frac{1}{a}+\frac{3}{4}\cdot\frac{1}{b}+\frac{1}{2}\cdot\frac{1}{b}+\frac{1}{2}\cdot\frac{1}{c}+\frac{1}{4}\cdot\frac{1}{a}+\frac{1}{4}\cdot\frac{1}{c}\)
\(\Leftrightarrow\frac{3}{a+b}+\frac{2}{b+c}+\frac{1}{a+c}\le\frac{1}{a}+\frac{5}{4}\cdot\frac{1}{b}+\frac{3}{4}\cdot\frac{1}{b}\)
\(\Leftrightarrow\frac{3}{a+b}+\frac{2}{b+c}+\frac{1}{a+c}\le\frac{1}{4}\left(\frac{4}{a}+\frac{5}{b}+\frac{3}{c}\right)\)
\(\Leftrightarrow Dpcm\)
a, Cho ( a,b) = 1 . Chung minh rang (a.b, a+b)=1
b, Cho (a,b)= 1. Tim UCLN (11a+2b , 18a +5b)
C,, Cho A = m+n ; B=m^2+n^2.Trong do m va n la cac so tu nhien nguyen to cung nhau. Tim UCLN (A,B)
d, Tim cac so tu nhien n sao cho n^3 - n^2 + n-1la so nguyen to
cho a khac 0 b khac 0 va a+b=1 chung minh rang \(\frac{b}{a^3-1}-\frac{a}{b^3-1}=\frac{2\left(a-b\right)}{a^2b^2+3}\)
cho bieu thuc A=3+3^2+3^3+3^4+...+3^100va B=3^301-1. chung minh rang A>B
Ta có: 3A = 3^2 + 3^3 + 3^4 + 3^5 +...+ 3^101
A = 3 + 3^2 + 3^3 + 3^4 +...+ 3^100
=> 3A - A = 3^101 - 3
=> 2A = 3^101 - 3
=> A = \(\frac{3^{101}-3}{2}\)
=> A = \(\frac{3^{101}-1}{2}-\frac{2}{2}=\left(3^{101}-1\right).\frac{1}{2}-1\)
=> A < B
cho a va b la 2 so tu nhien .Biet a chia cho 3 du 1 va b chia cho 3 du 2.Chung minh rang ab chia cho 3 du 2.
ọi k là một số nguyên, theo đề ta có:
a=3k+1
b=3k+2
ab=(3k+1)(3k+2)=9k^2+9k+2
vì 9k^2 và 9k chia hết cho 3
nên ab chia 3 dư 2
- Vì a chia cho 3 dư 1 nên a = 3m + 1 ( m \(\in\)N )
- Vì b chia cho 3 dư 2 nên b = 3n + 2 ( n\(\in\)N )
Ta có :
a . b = ( 3m + 1 ) ( 3n + 2 )
= 3m . 3n + 3m . 2 + 1 . 3n + 1 . 2
= ( 9 mn + 6m + 3n ) + 2
= 3 ( 3mn + 2m + n ) + 2 ....
Vậy ab chia cho 3 dư 2 .
- Vì a chia cho 3 dư 1 nên a = 3m + 1 ( m ∈N )
- Vì b chia cho 3 dư 2 nên b = 3n + 2 ( n∈N )
Ta có :
a . b = ( 3m + 1 ) ( 3n + 2 )
= 3m . 3n + 3m . 2 + 1 . 3n + 1 . 2
= ( 9 mn + 6m + 3n ) + 2
= 3 ( 3mn + 2m + n ) + 2 ....
Vậy ab chia cho 3 dư 2 .
P/s tham khảo nha
cau1;tim so tu nhien n biet rang 1+2+3.........+n=1275 cau2; a.timUC cua 2n+1va 3n+1[n∈N] b.chung minh rang 7n+10 va 5n+7 la so nguyen to cung nhau. cau3;biet rang ;7a+2b⋮13 voi [a;b∈N] chung minh rang 10a+b cung ⋮ 13 cau4.tim 2 so tu nhiena;b biet; a+2b=48va UCLN [a;b]+3 BCNN[a;b]=114
Câu 1:
=>n(n+1)=1275
=>n^2+n-1275=0
=>\(n\in\varnothing\)
Câu 2:
a: Gọi d=ƯCLN(2n+1;3n+1)
=>6n+3-6n-2 chia hết cho d
=>1 chia hết cho d
=>d=1
=>ƯC(2n+1;3n+1)={1;-1}
b: Gọi d=ƯCLN(7n+10;5n+7)
=>35n+50-35n-49 chia hết cho d
=>1 chia hết cho d
=>d=1
=>7n+10 và 5n+7 là hai số nguyên tố cùng nhau
cho a^3 b^3 + a^3 c^3 + b^3 c^3 =3a^2 b^2 c^2. chung minh rang (ab+bc)(bc+ac)(bc+ac)=-a^2 b^2 c^2. Giúp mình đi mình tích cho.