CMR \(\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+...+\dfrac{1}{19}< 2\)
*Thực hiện
1/ (\(\dfrac{2021}{2020}\)+\(\dfrac{2020}{2021}\)) x (\(\dfrac{1}{2}\)-\(\dfrac{1}{3}\)-\(\dfrac{1}{6}\))
2/ (\(\dfrac{7}{19}\)-\(\dfrac{5}{12}\)):\(\dfrac{-5}{8}\)-(\(\dfrac{7}{19}\)-\(\dfrac{29}{12}\)):\(\dfrac{5}{8}\)
3/ \(\dfrac{-5}{6}\)x\(\dfrac{7}{24}\)-\(\dfrac{5}{6}\)x\(\dfrac{14}{24}\)-\(\dfrac{5}{6}\)x\(\dfrac{3}{24}\)
1/ \(\left(\dfrac{2021}{2020}+\dfrac{2020}{2021}\right).\left(\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{6}\right)\)
=\(\left(\dfrac{2021}{2020}+\dfrac{2020}{2021}\right).0\)
=\(0\)
mink chịu bài này nó rất khó
CMR \(1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{19}-\dfrac{1}{20}=\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}+...+\dfrac{1}{20}\)
Tính bằng cách hợp lý:
\(a,\dfrac{2}{3}+\left(\dfrac{5}{7}+\dfrac{-2}{3}\right)\)
\(b,\left(\dfrac{-1}{4}+\dfrac{5}{8}\right)+\dfrac{-3}{8}\)
\(c,\dfrac{7}{5}.\dfrac{8}{19}+\dfrac{7}{5}.\dfrac{12}{19}-\dfrac{7}{5}.\dfrac{1}{19}\)
\(d,6\dfrac{3}{10}-\left(3\dfrac{4}{7}+2\dfrac{3}{10}\right)\)
\(e,\left(31,12-5,97\right)-\left(-68,88+4,03\right)\)
\(h,3,7.\left(-10,56\right)+3,7.110,56\)
Chứng minh:
\(\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+...+\dfrac{1}{17}+\dfrac{1}{18}+\dfrac{1}{19}< 2\)
BT2: Tính nhanh
5) \(\dfrac{1}{7}.\dfrac{2}{5}+\dfrac{1}{7}.\dfrac{1}{5}+\dfrac{1}{7}.\dfrac{4}{5}\)
6) \(\dfrac{-3}{7}.\dfrac{19}{11}+\dfrac{-2}{7}.\dfrac{3}{11}+4\dfrac{6}{11}\)
5, \(\dfrac{1}{7}.\dfrac{2}{5}+\dfrac{1}{7}.\dfrac{1}{5}+\dfrac{1}{7}.\dfrac{4}{5}\)
= \(\dfrac{1}{7}.\left(\dfrac{2}{5}+\dfrac{1}{5}+\dfrac{4}{5}\right)\)
= \(\dfrac{1}{7}\).1
=\(\dfrac{1}{7}\)
5) \(\dfrac{1}{7}.\dfrac{2}{5}+\dfrac{1}{7}.\dfrac{1}{5}+\dfrac{1}{7}.\dfrac{4}{5}\) = \(\dfrac{1}{7}.\left(\dfrac{2}{5}+\dfrac{1}{5}+\dfrac{4}{5}\right)\)
= \(\dfrac{1}{7}.\dfrac{7}{5}=\dfrac{1}{5}\)
Bài 1.( 2 điểm)Tính bằng cách hợp lí:
a) \(\dfrac{1}{2}+\dfrac{9}{10}+\dfrac{5}{6}-\dfrac{11}{14}-\dfrac{1}{3}+\dfrac{-4}{35}\)
b) \(\left(\dfrac{18}{23}+\dfrac{7}{12}\right)+\left(\dfrac{-13}{19}-\dfrac{3}{4}\right)+\left(\dfrac{-6}{19}+\dfrac{5}{23}\right)\)
c) \(\dfrac{4}{3}+\dfrac{-5}{6}+\dfrac{-1}{4}\)
d) \(\dfrac{5}{6}-\dfrac{7}{5}+\dfrac{17}{30}\)
1: \(\dfrac{1}{2}+\dfrac{9}{10}+\dfrac{5}{6}-\dfrac{11}{14}-\dfrac{1}{3}+\dfrac{-4}{35}\)
\(=\left(\dfrac{1}{2}+\dfrac{5}{6}-\dfrac{1}{3}\right)+\dfrac{9}{10}-\left(\dfrac{11}{14}+\dfrac{4}{35}\right)\)
\(=\dfrac{3+5-2}{6}+\dfrac{9}{10}-\dfrac{55+8}{70}\)
\(=1+\dfrac{9}{10}-\dfrac{9}{10}\)
=1
Tính giá trị biểu thức
a, \(19\dfrac{5}{8}:\dfrac{7}{12}-15\dfrac{1}{4}:\dfrac{7}{12}\) b,\(\dfrac{2}{5}.\dfrac{1}{3}-\dfrac{2}{15}:\dfrac{1}{5}+\dfrac{3}{5}.\dfrac{1}{3}\)
c, \(\left(3\dfrac{1}{3}+2,5\right):\left(3\dfrac{1}{6}-4\dfrac{1}{5}\right)-\dfrac{11}{31}\) d, \(\left[6+\left(\dfrac{1}{2}\right)^3-\left|-\dfrac{1}{2}\right|\right]:\dfrac{3}{12}\)
a) \(=\dfrac{157}{8}.\dfrac{12}{7}-\dfrac{61}{4}.\dfrac{12}{7}=\dfrac{12}{7}\left(\dfrac{157}{8}-\dfrac{61}{4}\right)=\dfrac{12}{7}.\dfrac{35}{8}=\dfrac{15}{2}\)
b) \(\dfrac{2}{5}.\dfrac{1}{3}-\dfrac{2}{15}\div\dfrac{1}{5}+\dfrac{3}{5}.\dfrac{1}{3}=\dfrac{1}{3}\left(\dfrac{2}{5}+\dfrac{3}{5}\right)-\dfrac{2}{15}.5=\dfrac{1}{3}.1-\dfrac{2}{3}=\dfrac{1}{3}-\dfrac{2}{3}=-\dfrac{1}{3}\)
c) \(=-\dfrac{80}{9}\)
a.=\(\dfrac{157}{8}:\dfrac{7}{12}-\dfrac{61}{4}:\dfrac{7}{12}=\dfrac{471}{14}-\dfrac{183}{7}=\dfrac{15}{2}\)
b.=\(\dfrac{2}{15}-\dfrac{2}{3}+\dfrac{1}{5}=-\dfrac{1}{3}\)
c.\(\left(\dfrac{10}{3}+2.5\right):\left(\dfrac{19}{6}-\dfrac{21}{5}\right)-\dfrac{11}{31}=\dfrac{35}{6}:\left(-\dfrac{31}{30}\right)-\dfrac{11}{31}=-\dfrac{175}{31}-\dfrac{11}{31}=-6\)
d.\(\left[6+\dfrac{1}{8}-\dfrac{1}{2}\right]:\dfrac{3}{12}=\dfrac{45}{8}:\dfrac{3}{12}=\dfrac{45}{2}\)
cmr \(\dfrac{1}{6}< \dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+...+\dfrac{1}{100^2}< \dfrac{1}{4}\)
Ta có :
\(\dfrac{1}{5^2}< \dfrac{1}{4.5}\)
\(\dfrac{1}{6^2}< \dfrac{1}{5.6}\)
....................
\(\dfrac{1}{100^2}< \dfrac{1}{99.100}\)
\(\Leftrightarrow\dfrac{1}{5^2}+\dfrac{1}{6^2}+........+\dfrac{1}{100^2}< \dfrac{1}{4.5}+\dfrac{1}{5.6}+.....+\dfrac{1}{99.100}=\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+.....+\dfrac{1}{99}-\dfrac{1}{100}=\dfrac{1}{4}-\dfrac{1}{100}< \dfrac{1}{4}\left(1\right)\)
Lại có :
\(\dfrac{1}{5^2}>\dfrac{1}{5.6}\)
\(\dfrac{1}{6^2}>\dfrac{1}{6.7}\)
............
\(\dfrac{1}{100^2}>\dfrac{1}{100.101}\)
\(\Leftrightarrow\dfrac{1}{5^2}+\dfrac{1}{6^2}+......+\dfrac{1}{100^2}>\dfrac{1}{5.6}+\dfrac{1}{6.7}+.....+\dfrac{1}{100.101}=\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+.....+\dfrac{1}{100}-\dfrac{1}{101}=\dfrac{1}{5}-\dfrac{1}{101}>\dfrac{1}{6}\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Leftrightarrowđpcm\)
CMR: \(\dfrac{1}{6}< \dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+...+\dfrac{1}{100^2}< \dfrac{1}{4}\)
Đặt: \(A=\dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+...+\dfrac{1}{100^2}\)
Ta có: \(\left\{{}\begin{matrix}A>\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+...+\dfrac{1}{100.101}=\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{100}-\dfrac{1}{101}=\dfrac{1}{5}-\dfrac{1}{101}>\dfrac{1}{6}\\A< \dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+...+\dfrac{1}{99.100}=\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{100}=\dfrac{1}{4}-\dfrac{1}{100}< \dfrac{1}{4}\end{matrix}\right.\)
Vậy \(\dfrac{1}{6}< A< \dfrac{1}{4}\)