Tìm x biết:
5x( x-2020 ) - 2x + 4040 = 0
Tìm x sao cho: \(\left|x-2020\right|-\left|x+2020\right|=4040\)
\(PT< =>-|x+2020|+|x-2020|=4040\)(viết cho dễ nhìn)
Xét \(x< -2020\)thì tương đương với \(-x+2020+x+2020=4040\)
\(< =>4040=4040\)(thỏa mãn mọi x > -2020)
Xét \(-2020\le x< 2020\)thì tương đương với \(-x+2020-x-2020=4040\)
\(< =>x=-\frac{4040}{2}=-2020\)(tmđk)
Xét \(x\ge2020\)thì tương đương với \(x-2020-x-2020=4040\)
\(< =>-4040=4040\)(vô lí)
Vậy ta có tập nghiệm \(x\le-2020\)thỏa mãn pt trên
làm xong tự nhiên ấn hủy :(( phải làm lại từ đầu
Tìm x:
1,2x^3-50x=0
2, 5x^2-4(x^2-2x+1)-5=0
3, 6x(x-2)=x-2
4, 7(x-2020)^2-x+2020=0
5,x^2-10x=-25
6, x^2-2x-3=0
1, \(2x^3-50x=0\Leftrightarrow2x\left(x^2-25\right)=0\Leftrightarrow x=0;x=\pm5\)
2, \(5x^2-4\left(x^2-2x+1\right)-5=0\)
\(\Leftrightarrow5\left(x-1\right)\left(x+1\right)-4\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)\left[5\left(x+1\right)-4\left(x-1\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+9\right)=0\Leftrightarrow x=-9;x=1\)
3, \(6x\left(x-2\right)=x-2\Leftrightarrow\left(6x-1\right)\left(x-2\right)=0\Leftrightarrow x=\frac{1}{6};x=2\)
4, \(7\left(x-2020\right)^2-x+2020=0\Leftrightarrow7\left(x-2020\right)^2-\left(x-2020\right)=0\)
\(\Leftrightarrow\left(x-2020\right)\left[7\left(x-2020\right)-1\right]=0\Leftrightarrow x=2020;x=\frac{14141}{7}\)
5, \(x^2-10x=-25\Leftrightarrow x^2-10x+25=0\Leftrightarrow\left(x-5\right)^2=0\Leftrightarrow x=5\)
6, \(x^2-2x-3=0\Leftrightarrow\left(x+1\right)\left(x-3\right)=0\Leftrightarrow x=-1;x=3\)
\(1,\)
\(2x^3-50x=0\)
\(\Leftrightarrow2x\left(x^2-25\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x^2-25=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm5\end{cases}}\)
\(2,\)
\(5x^2-4\left(x^2-2x+1\right)-5=0\)
\(\Leftrightarrow5x^2-4x^2+8x-4-5=0\)
\(\Leftrightarrow x^2+8x-9=0\)
\(\Leftrightarrow x^2-x+9x-9=0\)
\(\Leftrightarrow x\left(x-1\right)+9\left(x-1\right)=0\)
\(\Leftrightarrow\left(x+9\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+9=0\\x-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-9\\x=1\end{cases}}\)
\(3,\)
\(6x\left(x-2\right)=x-2\)
\(\Leftrightarrow6x\left(x-2\right)-\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(6x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=\frac{1}{6}\end{cases}}\)
\(4,\)
\(7\left(x-2020\right)^2-x+2020=0\)
\(\Leftrightarrow7\left(x-2020\right)^2-\left(x-2020\right)=0\)
\(\Leftrightarrow\left(x-2020\right)[7\left(x-2020\right)-1]=0\)
\(\Leftrightarrow\left(x-2020\right)[7x-14141]=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=2020\\7x=14141\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2020\\x=\frac{14141}{7}\end{cases}}\)
\(5,\)
\(x^2-10x=-25\)
\(\Leftrightarrow x^2-10x+25=0\)
\(\Leftrightarrow\left(x-5\right)^2=0\)
\(\Leftrightarrow x-5=0\)
\(\Leftrightarrow x=5\)
\(6,\)
\(x^2-2x-3=0\)
\(\Leftrightarrow x^2-3x+x-3=0\)
\(\Leftrightarrow x\left(x-3\right)+\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x+1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=-1\end{cases}}\)
Bài 2: Tìm x
a) x mũ 2 - 4x = 0
b) 5x ( x - 2020 ) - x + 2020 = 0
c) (4x+5) mũ 2 - (2x-1) mũ 2 = 0
d) x mũ 2 + 6x - 8 = 0
e) 4x mũ 2 + 2x - 6 = 0
Bài 2 :
a, \(x^2-4x=0\Leftrightarrow x\left(x-4\right)=0\Leftrightarrow x=0;4\)
b, \(5x\left(x-2020\right)-x+2020=0\)
\(\Leftrightarrow5x\left(x-2020\right)-\left(x-2020\right)=0\Leftrightarrow\left(5x-1\right)\left(x-2020\right)=0\)
\(\Leftrightarrow x=\frac{1}{5};2020\)
c, \(\left(4x+5\right)^2-\left(2x-1\right)^2=0\)
\(\Leftrightarrow16x^2+40x+25-\left(4x^2-4x+1\right)=0\)
\(\Leftrightarrow12x^2+44x+24=0\Leftrightarrow4\left(x+3\right)\left(3x+2\right)=0\)
\(\Leftrightarrow x=-3;-\frac{2}{3}\)
a,x2-4x=0
= x.(x-4)=0
=> x=0 hoặc x-4=0
=>x=0 hoặc x=4
a. x2 - 4x = 0
<=> x ( x - 4 ) = 0
<=>\(\orbr{\begin{cases}x=0\\x=-4\end{cases}}\)
b. 5x ( x - 2020 ) - x + 2020 = 0
<=> 5x ( x - 2020 ) - ( x - 2020 ) = 0
<=> ( 5x - 1 ) ( x - 2020 ) = 0
<=>\(\orbr{\begin{cases}5x-1=0\\x-2020=0\end{cases}}\)<=>\(\orbr{\begin{cases}x=\frac{1}{5}\\x=2020\end{cases}}\)
c. ( 4x + 5 )2 - ( 2x - 1 )2 = 0
<=> 16x2 + 40x + 25 - 4x2 + 4x - 1 = 0
<=> 12x2 + 44x + 24 = 0
<=> 4 ( 3x2 + 11x + 6 ) = 0
<=> ( 3x2 + 9x ) + ( 2x + 6 ) = 0
<=> 3x ( x + 3 ) + 2 ( x + 3 ) = 0
<=> ( 3x + 2 ) ( x + 3 ) = 0
<=>\(\orbr{\begin{cases}3x+2=0\\x+3=0\end{cases}}\)<=>\(\orbr{\begin{cases}x=-\frac{2}{3}\\x=-3\end{cases}}\)
d. x2 + 6x - 8 = 0
<=> x2 + 6x + 9 = 17
<=> ( x + 3 )2 = 17
<=>\(\orbr{\begin{cases}x+3=\sqrt{17}\\x+3=-\sqrt{17}\end{cases}}\)<=>\(\orbr{\begin{cases}x=-3+\sqrt{17}\\x=-3-\sqrt{17}\end{cases}}\)
e. 4x2 + 2x - 6 = 0
<=> 2 ( 2x2 + x - 3 ) = 0
<=> ( 2x2 + 3x ) - ( 2x + 3 ) = 0
<=> x ( 2x + 3 ) - ( 2x + 3 ) = 0
<=> ( x - 1 ) ( 2x + 3 ) = 0
<=>\(\orbr{\begin{cases}x-1=0\\2x+3=0\end{cases}}\)<=>\(\orbr{\begin{cases}x=1\\x=-\frac{3}{2}\end{cases}}\)
Cho x>0 ,y>0 và x+y =2 . Tìm giá trị nhỏ nhất của biểu thức :
P = 2x^2 -y^2 -5x +1/x +2020
\(x+y=2\Rightarrow y=2-x\)
\(P=2x^2-\left(2-x\right)^2-5x+\dfrac{1}{x}+2020=x^2-x+\dfrac{1}{x}+2016\)
\(P=x^2+1-x+\dfrac{1}{x}+2015\ge2x-x+\dfrac{1}{x}+2015\)
\(P\ge x+\dfrac{1}{x}+2015\ge2\sqrt{\dfrac{x}{x}}+2015=2017\)
Dấu "=" xảy ra khi \(x=y=1\)
Tìm đa thức M biết rằng:M+(5x^2-2xy)=6x^2+9xy-y^2.Tính giá trị của M khi x,y thỏa mãn (2x-5)^2018+(3y+4)^2020 <hoặc=0
\(\left(2x-5\right)^{2018}+\left(3y+4\right)^{2020}\le0\\ \Leftrightarrow\left(2x-5\right)^{2018}+\left(3y+4\right)^{2020}=0\\ \Leftrightarrow\left\{{}\begin{matrix}\left(2x-5\right)^{2018}=0\\\left(3y+4\right)^{2020}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{2}\\y=-\dfrac{4}{3}\end{matrix}\right.\\ \Leftrightarrow M=6x^2+9xy-y^2-5x^2+2xy=x^2+11xy-y^2\\ \Leftrightarrow M=\dfrac{25}{4}-11\cdot\dfrac{4}{3}\cdot\dfrac{5}{2}-\dfrac{16}{9}=\dfrac{25}{4}-\dfrac{110}{3}-\dfrac{16}{9}=-\dfrac{1159}{36}\)
Tìm đa thức M biết rằng:M+(5x^2-2xy)=6x^2+9xy-y^2.Tính giá trị của M khi x,y thỏa mãn (2x-5)^2020+(3y+4)^2022 <hoặc=0
M=6x^2+9xy-y^2-5x^2+2xy=x^2+11xy-y^2
(2x-5)^2020+(3y+4)^2022<=0
=>x=5/2 và y=-4/3
M=25/4+11*5/2*(-4/3)-16/9=-1159/36
Tìm các cặp số nguyên (x;y) thỏa: y6060 = x6060 - x4040 - x2020 + 2
tìm x
/ \(\frac{1}{3}+2019.x\) / + /\(\frac{2}{3}+2020.x\) / = 4040.x
\(\frac{1}{3}+2019x+\frac{2}{3}+2020x=4040x\)
\(\Rightarrow\frac{1}{3}+\frac{2}{3}+2019x+2020x=4040x\)
\(\Rightarrow1=4040x-2020x-2019x\)
\(\Rightarrow1=x\)
\(\Rightarrow x=1\)
Vậy x=1
Chúc bn học tốt
a , | 4x + 2020 | = 0
b , | 2x + 1/4 | + | -5 | = | -14 |
c , | 2020 - 5x | - | 3 | = - | -8 |
d , | x mũ 2 + 4x | = 0
e , | x-1 | + 3x = 1
g , | 2-3x | + 3x = 2
h , | 5x-4 | + 5x = 4
i , | x - 1/4 | - | 2x + 5 | = 0
k , | 5x - 7 | - | 8-5x | = 0
n , | x mũ 3 - 4x | =0
CÂU NÀO CÁC BẠN LÀM ĐC THÌ GIÚP MK NHA !!!!
a, x=-505
b, x=35/8 hoac -37/8
nhung cau con lai thi tong tu
a. \(\left|4x+2020\right|=0\)
\(\Rightarrow4x+2020=0\)
\(\Rightarrow4x=-2020\)
\(\Rightarrow x=-505\)
b. \(\left|2x+\frac{1}{4}\right|+\left|-5\right|=\left|-14\right|\)
\(\Rightarrow\left|2x+\frac{1}{4}\right|+5=14\)
\(\Rightarrow\left|2x+\frac{1}{4}\right|=9\)
\(\Rightarrow\orbr{\begin{cases}2x+\frac{1}{4}=9\\2x+\frac{1}{4}=-9\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}2x=\frac{35}{4}\\2x=-\frac{37}{4}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{35}{8}\\x=-\frac{37}{8}\end{cases}}\)
c. \(\left|2020-5x\right|-\left|3\right|=-\left|-8\right|\)
\(\Rightarrow\left|2020-5x\right|-3=-8\)
\(\Rightarrow\left|2020-5x\right|=-5\left(vl\right)\)
=> x vô nghiệm
d. \(\left|x^2+4x\right|=0\)
\(\Rightarrow x^2+4x=0\)
\(\Rightarrow x\left(x+4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x+4=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\x=-4\end{cases}}\)