Cho tam giác ABC có AD là phân giác, gócB - gócC=90độ
Tính góc ADB
cho tam giác ABC có góc A bằng 120 độ đường phân giác AD. Gọi Klà giao điểm của đường thẳng CAvà đường phân giác góc ngoài tại đỉnh B gọi E là giao điểm của AB và DK . CM: DK là tia phân giác của góc ADB
Cho tam giác ABC có góc A=60\(^o\)tia pgiacs của gócB và gócC cát cạnh đối diên ở D và E cắt nhau tại O.Tia pgiác của góc BOC cắt BC ở F.CMR:
a)OD=OE=OF
b)tam giác DEF đều
Cho biết tam giác ABC có AB=AC. Gọi D là trung điểm của BC . Chứng minh rằng :
a)Tam giác ADB =BAC
b)AD là tia phân giác của BAC
c) AD vuông góc BD
a) (Xem lại đề) xửa : t/giác ADB = t/giác ADC
Xét t/giác ADB và t/giác ADC
có: AB = AC (gt)
AD : chung
BD = DC (gt)
=> t/giác ADB = t/giác ADC (c.c.c)
b) Ta có: t/giác ADB = t/giác ADC (cmt)
=> \(\widehat{BAD}=\widehat{DAC}\)(2 góc t/ứng)
=> AD là tia p/giác của \(\widehat{BAC}\)
c) Ta có: t/giác ADB = t/giác ADC (cmt)
=> \(\widehat{ADB}=\widehat{ADC}\) (2 góc t/ứng)
mà \(\widehat{ADB}+\widehat{ADC}=180^0\)(kề bù)
=> \(\widehat{ADB}=\widehat{ADC}=90^0\)
=> AD \(\perp\)BD
cho tam giác abc có ab=ac. gọi d là trung điểm bc chứng minh
a)tam giác adb=tam giác adc
b)ad vuông góc với bc
ai giúp mình nhanh với ạ cần gấp
a: Xét ΔADB và ΔADC có
AD chung
DB=DC
AB=AC
Do đó: ΔADB=ΔADC
b: Ta có: ΔABC cân tại A
mà AD là đường trung tuyến
nên AD là đường cao
a) Xét tam giác ADB và tam giác ADC:
+ AD chung.
+ AB = AC (gt).
+ BD = CD (D là trung điểm BC).
=> Tam giác ADB = Tam giác ADC (c - c - c).
b) Xét tam giác ABC: AB = AC (gt).
=> Tam giác ABC cân tại A.
Mà AD là trung tuyến (D là trung điểm BC).
=> AD là đường cao (Tính chất tam giác cân).
=> AD vuông góc BC (đpcm).
a) cho tam giác ABC cân tại A. Trên tia đối của tia AB lây điểm M, trên tia đối của tia AC lấy điểm N sao cho AM=AN. chứng minh rằng tứ giác MNBC là hình thang cân.
b) cho tứ giác ABCD có AD=AB=BC và gócA+gócC=180 độ. chứng minh rằng:
-DB là phân giác góc D
-ABCD là hình thang cân
a: Xét ΔANM và ΔACB có
AN/AC=AM/AB
\(\widehat{NAM}=\widehat{CAB}\)
Do đó: ΔANM\(\sim\)ΔACB
Suy ra: \(\widehat{ANM}=\widehat{ACB}\)
hay MN//BC
Xét tứ giác MNBC có MN//BC
nên MNBC là hình thang
mà MB=NC
nên MNBC là hình thang cân
b: Xét tứ giác ABCD có \(\widehat{BAD}+\widehat{BCD}=180^0\)
nên ABCD là tứ giác nội tiếp
Xét đường tròn ngoại tiếp tứ giác ABCD có
\(\widehat{ADB}\) là góc nội tiếp chắn cung AB
\(\widehat{BDC}\) là góc nội tiếp chắn cung BC
mà \(sđ\stackrel\frown{AC}=sđ\stackrel\frown{BC}\)
nên \(\widehat{ADB}=\widehat{CDB}\)
hay DB là tia phân giác của góc ADC
Cho tam giác ABC có AB<AC, AD là tia phân giác của góc BAC. Trên cạnh AC lấy E sao cho EA=EB. cmr
a) t.giác ABD= tg AED
b) AD v.góc BE
c) góc ADB < góc ADC
Cho tam giác ABC có AB = AC, tia phân giác của góc A cắt cạnh BC tại D, lấy điểm E trên AD. CMR
a.Tam giác AEB = tam giác AEC
b.ED là phân giác của góc BEC
c.AD vuông góc với BC
anh nguyen tuan anh mới học lớp 6 sao biết được
Cho tam giác nhọn ABC có AB<AC. Gọi O là trung điểm của BC, kẻ các đường cao BM và CN của tam giác ABC. Tia phân giác của góc BAC cắt tia phân giác của góc MON tại D. Gọi E là giao điểm của AD và BC. Chứng minh rằng tứ giác BNDE nội tiếp.
cho tam giác ABC có góc A =45o , góc C =35o , tia phân giác góc B cắt AC tại D . Tính góc ADB , góc CDB ?
Ta có :
góc B = tam giác ABC - góc A - góc C = 180 - 45 - 35 = 110
tia DB là tia phân giác của góc B => góc ABD = 110 : 2 = 55
ta có : tam giác ADB = 180 = A + B + C = 45 + 55 + D
=> góc ADB = 180 - 45 -55 = 80
ta có : góc ADC là góc bẹt => ADC = 180 = ADB + CDB = 80 + CDB
=> góc CDB = 180 - 80 = 100
Xét \(\Delta ABC\) có :
\(\widehat{A}+\widehat{B}+\widehat{C}=180^O\) ( định lí tổng 3 góc trong 1 tam giác )
hay \(45^o+\widehat{B}+35^o=180^o\)
\(\Rightarrow\widehat{B}=180^o-35^o-45^o=100^o\)
Vì \(\Delta ABC\) có BD là tia phân giác nên
\(\widehat{ABD}=\widehat{DBC}=\dfrac{1}{2}\widehat{ABC}\) \(=\dfrac{1}{2}\times100=50^o\)
Xét \(\Delta ABD\) có :
\(\widehat{A}+\widehat{AB}D+\widehat{BDA}=180^o\) (định lí tổng 3 góc trong 1 tam giác)
hay \(45^o+50^o+\widehat{BDA}=180^o\)
\(\Rightarrow\widehat{BDA}=180^o-50^o-45^o=85^o\)
Xét \(\Delta CBD\) có :
\(\widehat{CBD}+\widehat{BDC}+\widehat{C}=180^o\) ( định lí tổng 3 góc trong 1 tam giác )
hay \(50^o+\widehat{BDC}+35^o=180^o\)
\(\Rightarrow\widehat{BDC}=180^o-50^o-35^o=95^o\)
Vậy \(\widehat{ADB}=85^o\)
\(\widehat{CDB}=95^o\)