Cho hình thang cân ABCD (AB//CD và AB<CD)
a) Gọi các điểm M, N, P, Q lần lượt là trung điểm các cạnh AB, BC, CD, DA. Chứng minh rằng MNPQ là hình thoi.
b) Trên cạnh CD lấy điểm E sao cho CE = AB. Chứng minh rằng AC là phân giác góc BCD thì tứ giác ABCE là hình thoi.
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
1, Cho hình thang cân ABCD (AB //, AB < CD). Gọi M, N, P, Q lần lượt là trung điểm các đoạn thẳng AD, BD, AC, BC .
a, Chứng minh 4 điểm M, N, P, Q thẳng hàng .
b, Chứng minh tứ giác ABPN là hình thang cân.
c, Tìm một hệ thức liên hệ giữa AB và CD để ABPN là hình chữ nhật
2, Cho tam giác ABC. Gọi O là một điểm thuộc miền trong của tam giác M, N, P, Q lần lượt là trung điểm của các đoạn thẳng OB, OC, AC, AB .
a, Chứng minh tứ giác MNPQ là hình bình hành.
b, Xác định vị trí của điểm O Để tứ giác MNPQ là hình chữ nhật
3, Cho tam giác ABC Vuông cân tại C. Trên các cạnh AC , BC lấy lần lượt các điểm P, Q sao cho AP = CQ. Từ điểm B vẽ PM // BC ( M thuộc AB) Chứng minh tứ giác PCQM là hình chữ nhật
M.N VẼ HÌNH GIÚP LUÔN NHÉ. THANKS NHIỀU Ạ
Bài khá dài đó.
Sorry nhé mik mới lớp 6 ak nên ko bít, tha lỗi nha!
ý kiến gì thì nhắn tin cho mik mai 7g
pp, ngủ ngon!
Bạn Nữ hoàng Elsa lửa bn k biết thì đừng trả lời nhé
làm j phải căng bn với nhau mà chơi cho hòa đồng và đừng có chảnh nhé
Cho hình bình hành ABCD có AB=2AD. Gọi M, N lần lượt là trung điểm của AB,CD
a, Chứng minh tứ giác AMND là hình bình hành
b, Chứng minh tứ giác AMND là hình thoi
c,Gọi K là điểm đối xứng với A qua D. Gọi Q là điểm đối xứng với N qua D. Tứ giác ANKQ là hình gì? Vì sao?
d, Hình bình hành ABCD có thêm điều kiện gì để tứ giác ABCM là hình thang cân
a: Xét tứ giác AMND có
AM//ND
AM=ND
Do đó: AMND là hình bình hành
b: Hình bình hành AMND có AM=AD
nên AMND là hình thoi
c: Xét tứ giác ANKQ có
D là trung điểm của NQ
D là trung điểm của AK
Do đó: ANKQ là hình bình hành
Bài 2.Cho hình thang ABCD. Gọi M,N,P,Q lần lượt là trung điểm các cạnh AB,BC,CD,DA.
a) Tứ giác MNPQ là hình gì? Vì sao?
b) CMR ABCD là hình thang cân thì MP là phân giác của góc QMN
Ta có MN song song và bằng QP (vì cùng song song với AC và bằng 1/2 của AC theo tính chất đường trung bình của tam giác)
Vậy MNPQ là hình bình hành vì có 2 canh đối song song và bằng nhau.
mk chi lam dc y a thui
Cho hình bình hành ABCD có AB = 2AD. Gọi M,N lần lượt là trung điểm của AB,CD
a) chứng minh tứ giác ABCD là hình bình hành
b)chừng minh tứ giác AMND là hình thoi
c)Gọi K là điểm đối xứng vời điểm A qua D.Gọi Q là điểm đối xứng với N qua D.Tứ giác ANKQ là hình gì? Vì sao?
d)Hình bình hành ABCD có thêm điều kiện gì để tứ giác ABCN là hình thang cân
(nhớ vẽ hình nha)
Bài làm:
a, hbh ABCD có: AB // CD và AB = CD
=> AM // DN và AM = DN
=> AMND là hbh mà AB = 2AD => 1/2AB = AD => AM = AD
=> AMND là hthoi
b, cmtt câu a ta có: MB // ND và MB = ND
=> MBND là hbh
Cho hình thang cân ABCD (AB//CD). Gọi M,N,P,Q theo thứ tự là trung điểm các cạnh AB; BC; CD và DA. Chứng minh tứ giác ABCD là hình thoi
Giúp mình với ạ mình đang cần gấp
Bài toán 1: Cho tam giác ABCD nhọn, đường cao AH. Các điểm M, N, P, Q lần lượt là trung điểm của các đoạn thẳng AB, AC, CH, BH:
a) CM: NP // MQ
b) CM rẳng MNPQ là hình chữ nhật
c) Tìm điều kiện của tam giác ABC để tứ giác MNPQ là hình vuông
Bài toán 2: Cho hình thoi MNPQ, gọi I là giao điểm của hai đường chéo. Vẽ đường thăng qua M song song với NQ, vẽ đường thăng qua N song song với MP. Hai đường thăng đó cắt nhau tại A.
a) Tứ giác AMIN là hình gì? Vì sao?
b) Chứng minh rằng : AI = MQ. c) Tìm điều kiện của hình thoi MNPQ để tứ giác AMIN là hình vuông.
Bài toán 3 : Cho AH là đường cao của hình thang cân ABCD (AB // CD ; AB < CD). Lấy điểm M sao cho CM = AB. Gọi K là điểm đối xứng với A qua H.
a) Chứng minh : Tứ giác ABCM là hình bình hành.
b) Chứng minh : ADKM là hình thoi.
c) Gọi E, F lần lượt là hình chiếu của A trên KD và KM. Chứng minh EF // CD.
d) Chứng minh rằng : Nếu tứ giác ADKM trở thành hình vuông thì AD I CB.:
Cho hình bình hành ABCD có AB = 2AD. Gọi M,N lần lượt là trung điểm của AB,CD
a) chứng minh tứ giác AMCN là hình bình hành
b)chừng minh tứ giác AMND là hình thoi
c)Gọi K là điểm đối xứng vời điểm A qua D.Gọi Q là điểm đối xứng với N qua D.Tứ giác ANKQ là hình gì? Vì sao?
d)Hình bình hành ABCD có thêm điều kiện gì để tứ giác ABCN là hình thang cân
(nhớ vẽ hình nha)
Câu a bạn sửa lại để đi mình giải cho .
Sao lại chứng minh ABCD là hình bình hành
Hình thang ABCD (AB//CD) có DC=2AB,Gọi M,N,P,Q lần lượt là trung điểm các cạnh AB,BC,Cd,DA
a)chứng minh các tứ giác ABPD , MNPQ là hình bình hành
b) tìm điều kiện của hình thang ABCD để MNPQ là hình thoi
c) gọi E là giao điểm của BD và AP.Chứng minh 2 điểm Q,N,E thẳng hàng