Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Văn Vũ
Xem chi tiết
ngonhuminh
29 tháng 10 2016 lúc 23:58

bài này tớ giải rồi mà

vào lúc : 000

ok minh giải chi tiết nhé.

Hiển nhiên hai vế dương

bình phương hai vế ta được

x+2căn3=y+z+2căn(yz)  [hằng đẳng thức thôi]

x-y-z=2can(yz)-2can(3)

nhận xét: x,y,z tư nhiên  do vậy vế trái là một số nguyên

vế phải cũng phải là một số nguyên => yz=3 để triệt tiêu số vô tỷ -2can(3) 

ok !!!

alibaba nguyễn
28 tháng 10 2016 lúc 7:11

Bình phương của 2 vế ta được

\(x+2\sqrt{3}=y+z+2\sqrt{yz}\)

Vì x,y,z đều tự nhiên nên phần vô tỷ và phần nguyên 2 vế phải bằng nhau hay

\(\hept{\begin{cases}x=y+z\\\sqrt{3}=\sqrt{yz}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=4\\y=1\\z=3\end{cases}}or\hept{\begin{cases}x=4\\y=3\\z=1\end{cases}}\)

Phạm Cao Tuấn
Xem chi tiết
Đặng Nguyễn Thu Giang
6 tháng 4 2016 lúc 21:47

2. x=4; (y;z)=(3;1) ; (1;3)

Thu Trần Thị
Xem chi tiết
ngonhuminh
21 tháng 10 2016 lúc 16:54

x+2can3=z+y+2can(yz)

y.z=3

z=1=> y=3; x=4

y=1=>z=3; x=4

gloria thuyvy
27 tháng 10 2016 lúc 22:11

z=1                             ;                       z=3

y=3                             ;                        y=1

x=4                             ;                        x=4

Nguyễn Văn Vũ
27 tháng 10 2016 lúc 22:22

sao ra đc vậy,giải thích cho mình vs

Nguyễn Minh Hoàng
Xem chi tiết
Nguyễn Minh Hoàng
7 tháng 8 2021 lúc 9:40

Ai giúp e vs ạ

Nguyễn Võ Thảo Vy
Xem chi tiết
Võ Huy Hoàng
Xem chi tiết
Trần Quốc Thắng
9 tháng 4 2021 lúc 20:13

ĐỊT MẸ

Khách vãng lai đã xóa
hoàng minh chính
Xem chi tiết
Nguyễn Việt Lâm
9 tháng 4 2022 lúc 17:56

Ta có:

\(1.\sqrt{1+x^2}+1.\sqrt{2x}\le\sqrt{\left(1+1\right)\left(1+x^2+2x\right)}=\sqrt{2}\left(x+1\right)\)

Tương tự:

\(\sqrt{1+y^2}+\sqrt{2y}\le\sqrt{2}\left(y+1\right)\) ; \(\sqrt{1+z^2}+\sqrt{2z}\le\sqrt{2}\left(z+1\right)\)

Cộng vế:

\(P\le\sqrt{2}\left(x+y+z+3\right)+\left(2-\sqrt{2}\right)\left(x+y+z\right)\le\sqrt{2}\left(3+3\right)+\left(2-\sqrt{2}\right).3=6+3\sqrt{2}\)

\(P_{max}=6+3\sqrt{2}\) khi \(x=y=z=1\)

hung
Xem chi tiết
tống thị quỳnh
Xem chi tiết
Trà My
30 tháng 5 2017 lúc 23:18

\(M^2=\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}+\frac{2xy}{\sqrt{yz}}+\frac{2yz}{\sqrt{zx}}+\frac{2xz}{\sqrt{yz}}=\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}+\frac{2x\sqrt{y}}{\sqrt{z}}+\frac{2y\sqrt{z}}{\sqrt{x}}+\frac{2z\sqrt{x}}{\sqrt{y}}\)

Áp dụng bđt Cô-si: \(\frac{x^2}{y}+\frac{x\sqrt{y}}{\sqrt{z}}+\frac{x\sqrt{y}}{\sqrt{z}}+z\ge4\sqrt[4]{\frac{x^2}{y}.\frac{x\sqrt{y}}{\sqrt{z}}.\frac{x\sqrt{y}}{\sqrt{z}}.z}=4x\)

tương tự \(\frac{y^2}{z}+\frac{y\sqrt{z}}{\sqrt{x}}+\frac{y\sqrt{z}}{\sqrt{x}}+x\ge4y\);\(\frac{z^2}{x}+\frac{z\sqrt{x}}{\sqrt{y}}+\frac{z\sqrt{x}}{\sqrt{y}}+y\ge4z\)

=>\(M^2+x+y+z\ge4\left(x+y+z\right)\Rightarrow M^2\ge3\left(x+y+z\right)\ge3.12=36\Rightarrow M\ge6\)

Dấu "=" xảy ra khi x=y=z=4

Vậy minM=6 khi x=y=z=4

Trà My
30 tháng 5 2017 lúc 22:56

b1: Áp dụng bđt Cauchy Schwarz dạng Engel ta được:

\(P=\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{y+z+x+z+y+y}=\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}=\frac{2}{2}=1\)

=>minP=1 <=> x=y=z=2/3