Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Rin Trương
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
19 tháng 5 2018 lúc 3:05

a)

Giải bài tập Vật lý lớp 10

Giả sử ABCD là hình chữ nhật. Gọi O là giao điểm của AC và BD.

Theo tính chất đường chéo của hình chữ nhật ta có; hai đường chéo bằng nhau và cắt nhau tại trung điểm mỗi đường.

Vậy: OA = OC và OB= OD

Do đó, O là tâm đối xứng của hình chữ nhật đó.

b)

Giải bài tập Vật lý lớp 10

Áp dung tính chất: Đường thẳng đi qua trung điểm hai đáy của hình thang cân là trục đối xứng của hình thang cân đó.

ABCD là hình chữ nhật

⇒ ABCD là hình thang cân (hai đáy AB và CD)

⇒ Đường thẳng đi qua trung điểm AB và CD là trục đối xứng ABCD.

Tương tự vậy: ABCD cũng là hình thang cân với hai đáy AD và BC

⇒ Đường thẳng đi qua trung điểm AD và BC là trục đối xứng của ABCD.

Vậy ta có điều phải chứng minh.

Nguyễn Hà Linh
Xem chi tiết
Võ Trương Anh Thư
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Thien Tu Borum
21 tháng 4 2017 lúc 15:23

a) Vì hình bình hành nhận giao điểm hai đường chéo làm tâm đối xứng, mà hình chữ nhật là một hình bình hành nên giao điểm hai đường chéo của hình chữ nhật là tâm đối xứng của hình.

b) Vì hình thang cân nhận đường thẳng đi qua trung điểm hai đáy làm trục đối xứng, mà hình chữ nhật là một hình thang cần có đáy là hai cạnh đối xứng của hình chữ nhật là trục đối xứng của hình

Hoàng Thảo Linh
12 tháng 10 2017 lúc 20:03

a) Vì hình bình hành nhận giao điểm hai đường chéo làm tâm đối xứng, mà hình chữ nhật là một hình bình hành nên giao điểm hai đường chéo của hình chữ nhật là tâm đối xứng của hình.

b) Vì hình thang cân nhận đường thẳng đi qua trung điểm hai đáy làm trục đối xứng, mà hình chữ nhật là một hình thang cần có đáy là hai cạnh đối xứng của hình chữ nhật là trục đối xứng của hình.



Lê văn vinh
Xem chi tiết
❊ Linh ♁ Cute ღ
29 tháng 12 2018 lúc 13:36

a,Vì hình bình hành nhận giao điểm hai đường chéo làm tâm đối xứng, mà hình chữ nhật là một hình bình hành nên giao điểm hai đường chéo của hình chữ nhật là tâm đối xứng của hình

b,Vì hình thang cân nhận đường thẳng đi qua trung điểm hai đáy làm trục đối xứng, mà  hình chữ nhật là một hình thang cân có hai đáy là hai cạnh đối xứng của hình chữ nhật nên hai đường thẳng đi qua trung điểm hai cặp cạnh đối của hình chữ nhật là hai trục đối xứng của hình chữ nhật đó


 

TuiTenQuynh
29 tháng 12 2018 lúc 13:43

a) Do trong hình chữ nhật, hai đường chéo cắt nhau tại trung điểm mỗi đường nên giao điểm của hai đường chéo là tâm đối xứng của hình chữ nhật.

b) Do hình thang cân nhận đường thẳng đi qua trung điểm hai đáy làm trục đối xứng, mà hình chữ nhật là một hình thang cân có đáy là hai cạnh đối xứng của hình chữ nhật, do đó hai đường thẳng đi qua trung điểm hai cạnh đối của hình chữ nhật là trục đối xứng của hình.

NTN vlogs
29 tháng 12 2018 lúc 14:31

a) Do trong hình chữ nhật, hai đường chéo cắt nhau tại trung điểm mỗi đường nên giao điểm của hai đường chéo là tâm đối xứng của hình chữ nhật.

b) Do hình thang cân nhận đường thẳng đi qua trung điểm hai đáy làm trục đối xứng, mà hình chữ nhật là một hình thang cân có đáy là hai cạnh đối xứng của hình chữ nhật, do đó hai đường thẳng đi qua trung điểm hai cạnh đối của hình chữ nhật là trục đối xứng của hình.

Minh Hiếu
Xem chi tiết
Lương Thu Trang
Xem chi tiết
Mr Lazy
15 tháng 7 2015 lúc 17:06

Bài này đúng với mọi tứ giác lồi, tất nhiên trong đó bao gồm cả hình thang.

Gọi tứ giác là ABCD; giao điềm 2 đường chéo là O. Sử dụng bất đẳng thức tam giác để chứng minh.

a/ Chứng minh tổng 2 đường chéo lớn hơn nửa chu vi lớn hơn nửa chu vì:

Tam giác AOB có OA+OB > AB

Tam giác BOC có OB+OC > BC

Tam giác COD có OC+OD > CD

Tam giác DOA có OD+OA > DA

=> 2(OA+OB+OC+OD) > AB+BC+CD+DA

=> OA+OB+OC+OD > (AB+BC+CD+DA)/2 (đpcm).

b/ Chứng minh tổng 2 đường chéo nhỏ hơn chu vi:

Tam giác ABC có CA < AB+BC

Tam giác BCD có BD < BC+CD

Tam giác CDA có CA < CD+DA

Tam giác DAB có BD < DA+AB

=> 2(AC+BD) < 2(AB+BC+CD+DA)

=> AC+BD < AB+BC+CD+DA (đpcm).

Ba Dấu Hỏi Chấm
Xem chi tiết
libra is my cute little...
14 tháng 10 2016 lúc 22:05

Do hình chữ nhật là hình bình hành nên nhận giao điểm hai đường chéo làm tâm đối xứng.
Chứng minh
b) Do hình chữ nhật là hình thang cân có đáy là hai cặp cạnh đối của nó. Do đó hai đường thẳng đi qua trung điểm hai cặp cạnh đối của hình chữ nhật là hai trục đối xứng của hình chữ nhật đó. 

XONG RÙI NÀ ^^^^^^^^^^^

Ba Dấu Hỏi Chấm
16 tháng 10 2016 lúc 9:01

~~~ tuong phai cm kieu gt kl co ma`

❊ Linh ♁ Cute ღ
29 tháng 12 2018 lúc 13:37

a,Vì hình bình hành nhận giao điểm hai đường chéo làm tâm đối xứng, mà hình chữ nhật là một hình bình hành nên giao điểm hai đường chéo của hình chữ nhật là tâm đối xứng của hình

b,Vì hình thang cân nhận đường thẳng đi qua trung điểm hai đáy làm trục đối xứng, mà  hình chữ nhật là một hình thang cân có hai đáy là hai cạnh đối xứng của hình chữ nhật nên hai đường thẳng đi qua trung điểm hai cặp cạnh đối của hình chữ nhật là hai trục đối xứng của hình chữ nhật đó