Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tin Trần Thị
Xem chi tiết
Nhi
Xem chi tiết
Hoàng Khánh Chi
Xem chi tiết
Nguyễn Trần Thái Uyên
6 tháng 12 2023 lúc 23:07

Ta thấy 
72
=
2
3
.
3
2
72=2 
3
 .3 
2
  nên a, b có dạng 
{

=
2

3


=
2

.
3


a=2 
x
 3 
y
 
b=2 
z
 .3 
t
 

  với 

,

,

,


N
x,y,z,t∈N và 



{

,

}
=
3
;



{

,

}
=
2
max{x,z}=3;max{y,t}=2. 

 Theo đề bài, ta có 
2

.
3

+
2

.
3

=
42

x
 .3 
y
 +2 
z
 .3 
t
 =42

 

2


1
.
3


1
+
2


1
3


1
=
7
⇔2 
x−1
 .3 
y−1
 +2 
z−1
 3 
t−1
 =7   (*), do đó 

,

,

,


1
x,y,z,t≥1

 TH1: 



,



x≥z,y≤t. Khi đó 

=
3
,

=
2
x=3,t=2. (*) thành:

 
4.
3


1
+
3.
2


1
=
7
4.3 
y−1
 +3.2 
z−1
 =7 


=

=
1
⇔y=z=1

 Vậy 
{

=
24

=
18

a=24
b=18

  (nhận)

 TH2: KMTQ thì giả sử 



,



x≥z,y≥t. Khi đó 

=
3
,

=
2
x=3,z=2. (*) thành 

 
4.
3


1
+
2.
3


1
=
7
4.3 
y−1
 +2.3 
t−1
 =7, điều này là vô lí.

 Vậy 
(

,

)
=
(
24
,
18
)
(a,b)=(24,18) hay 
(
18
,
24
)
(18,24) là cặp số duy nhất thỏa yêu cầu bài toán.

Xem chi tiết
Nguyễn Thị Mát
30 tháng 12 2019 lúc 15:54

Tìm min :

Ta có : \(x^2+y^2-xy=4\)

\(\Leftrightarrow x^2+y^2=4+xy\le4+\frac{x^2+y^2}{2}\) ( vì \(\left(x-y\right)^2\ge0\) )
\(\Leftrightarrow\frac{A}{2}\le4\)

\(\Leftrightarrow A\le8\)

Khách vãng lai đã xóa
Nguyễn Thị Mát
30 tháng 12 2019 lúc 15:56

Tìm max

\(x^2+y^2-xy=4\)

\(\Leftrightarrow x^2+y^2=4+xy\)

\(\Leftrightarrow3\left(x^2+y^2\right)=8+\left(x+y\right)^2\ge8\)

\(\Leftrightarrow A\ge\frac{8}{3}\)

Khách vãng lai đã xóa
Bạch Tuyết
30 tháng 12 2019 lúc 15:59

Há miệng ra và nói: ''PHỞ SÁNG"

Khách vãng lai đã xóa
Nguyễn Phương Thảo
Xem chi tiết
Bùi Thế Hào
6 tháng 12 2017 lúc 10:07

Ta có: \(2x^2+\frac{y^2}{4}+\frac{1}{x^2}=4\)

=> \(\left(x^2+\frac{y^2}{4}\right)+\left(x^2+\frac{1}{x^2}\right)=4\)

Lại có: \(x^2+\frac{y^2}{4}\ge2.x.\frac{y}{2}=xy\) Và \(x^2+\frac{1}{x^2}\ge2.x.\frac{1}{x}=2\)

=> \(4\ge xy+2\)=> \(2\ge xy\)

=> \(A=2016+xy\le2016+2=2018\)

=> Amin=2018

Khôi Nguyên
3 tháng 10 2020 lúc 15:30

\(\sqrt[]{\sqrt{ }\frac{ }{ }\sqrt[]{}3\hept{\begin{cases}\\\\\end{cases}}3\frac{ }{ }\sqrt{ }\cos\hept{\begin{cases}\\\\\end{cases}}\Omega3\cong}\)

Khách vãng lai đã xóa

oo

Tiên Nguyễn Thủy
Xem chi tiết
Đinh quang hiệp
14 tháng 9 2018 lúc 15:57

\(x+y=4xy\Rightarrow\frac{x+y}{xy}=\frac{1}{x}+\frac{1}{y}=4\)

\(\frac{1}{x}+\frac{1}{y}>=\frac{4}{x+y}\Rightarrow4>=\frac{4}{x+y}\Rightarrow x+y>=1\)(bđt svacxo)

\(x^2+y^2>=\frac{\left(x+y\right)^2}{2};xy< =\frac{\left(x+y\right)^2}{4}\)

\(\Rightarrow P=x^2+y^2-xy>=\frac{\left(x+y\right)^2}{2}-\frac{\left(x+y\right)^2}{4}=\frac{\left(x+y\right)^2}{4}>=\frac{1^2}{4}=\frac{1}{4}\)

dấu = xảy ra khi \(x+y=1;x=y\Rightarrow x=y=\frac{1}{2}\left(tm\right)\)

vậy min P là \(\frac{1}{4}\)khi x=y=\(\frac{1}{2}\)

Tiên Nguyễn Thủy
Xem chi tiết
trần gia bảo
Xem chi tiết
tth_new
23 tháng 2 2020 lúc 20:46

Làm phần min trước, Max để mai:

Ta chứng minh \(P\ge\frac{18}{25}\).

*Nếu x = 0 thì \(y^2=\frac{1}{2}\Rightarrow P=\frac{7}{4}>\frac{18}{25}\)

*Nếu x khác 0. Xét hiệu hai vế ta thu được:

\(\ge0\)

P/s: Nên rút gọn cái biểu thức cuối cùng lại cho nó đẹp và khi đó ta không cần xét 2 trường hợp như trên:D

Khách vãng lai đã xóa
tth_new
23 tháng 2 2020 lúc 20:49

Cách khác đơn giản hơn:

Đặt \(x+y=a;xy=b\Rightarrow a^2\ge4b\)

\(\Rightarrow2a^2-1=5b\) rồi rút thế các kiểu cho nó thành 1 biến là xong:D (em nghĩ vậy thôi chứ chưa thử)

Khách vãng lai đã xóa
Không Tên
23 tháng 2 2020 lúc 22:37

\(1+xy=2\left(x^2+y^2\right)\ge4xy\)    =>  \(xy\le\frac{1}{3}\)

\(1+xy=2\left(x^2+y^2\right)=2\left(x+y\right)^2-4xy\ge-4xy\) =>   \(xy\ge-\frac{1}{5}\)

=>  \(-\frac{1}{5}\le xy\le\frac{1}{3}\)

\(P=7.\left[\left(x^2+y^2\right)^2-2x^2y^2\right]+4x^2y^2\)

\(=7.\left(\frac{1+xy}{2}\right)^2-10x^2y^2=\frac{-33x^2y^2+14xy+7}{4}\)

đặt  \(t=xy\)

\(P=\frac{-33t^2+14t+7}{4}\)

........................

\(P_{min}=\frac{18}{25}\) tại  \(xy=-\frac{1}{5}\)

\(P_{max}=\frac{70}{33}\)  tại  \(xy=\frac{7}{33}\)

Khách vãng lai đã xóa
Thùy Hoàng
Xem chi tiết
Nguyễn Nhật Minh
5 tháng 8 2016 lúc 23:46

1. \(1=x^2+y^2\ge2xy\Rightarrow xy\le\frac{1}{2}\)

 \(A=-2+\frac{2}{1+xy}\ge-2+\frac{2}{1+\frac{1}{2}}=-\frac{2}{3}\)

max A = -2/3 khi x=y=\(\frac{\sqrt{2}}{2}\)

Nguyễn Nhật Minh
5 tháng 8 2016 lúc 23:51

\(\frac{1}{xy}+\frac{1}{xz}=\frac{1}{x}\left(\frac{1}{y}+\frac{1}{z}\right)\ge\frac{1}{x}.\frac{4}{y+z}=\frac{4}{\left(4-t\right)t}=\frac{4}{4-\left(t-2\right)^2}\ge1\) với t = y+z => x =4 -t

Nguyễn Nhật Minh
6 tháng 8 2016 lúc 0:08

\(A=x^2+y^2=\frac{\left(1^2+1^2\right)\left(x^2+y^2\right)}{2}\ge\frac{\left(1.x+1.y\right)^2}{2}=\frac{1}{2}\)A min = 1 khi x =y = 1/2

\(\sqrt{A}=\sqrt{x^2+y^2}\le\sqrt{x^2}+\sqrt{y^2}=x+y=1\)\(\sqrt{a+b}\le\sqrt{a}+\sqrt{b}\))

=> A\(\le1\) => Max A = 1 khi x =0;y =1 hoặc x =1 ; y =0