a) 1/2+1/4+1/8+1/16+....+1/512
b) 1/2+1/6+1/12+1/20+1/30+1/42+1/56+...+1/90+1/110
Tính nhanh: A. 1/2 +1/4+1/8+1/16+1/32+1/64+1/128. B. 1/2 + 1/6 + 1/12 + 1/20 + 1/30 + 1/42 + 1/56 + 1/72 + 1/90 + 1/110 Các bạn giúp mình với mình cảm ơn
a: \(A=\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+...+\left(\dfrac{1}{2}\right)^7\)
=>\(2\cdot A=1+\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+...+\left(\dfrac{1}{2}\right)^6\)
=>\(2A-A=1-\left(\dfrac{1}{2}\right)^7=1-\dfrac{1}{128}=\dfrac{127}{128}\)
=>\(A=\dfrac{127}{128}\)
b: \(B=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{10\cdot11}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{10}-\dfrac{1}{11}\)
\(=1-\dfrac{1}{11}=\dfrac{10}{11}\)
1/2+1/6+1/12+1/20+1/30+1/42+1/56+1/90+1/110 = ?
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{90}+\frac{1}{110}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{9.10}+\frac{1}{10.11}\)
=\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...\frac{1}{7}-\frac{1}{8}+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}\)
\(=1-\frac{1}{8}+\frac{1}{9}-\frac{1}{11}\)
\(=\frac{709}{792}\)
Tính
a) 9/110-1/90-1/72-1/56-1/42-1/30-1/20-1/12-1/6-1/2
\(=\frac{9}{10.11}-\frac{1}{9.10}-\frac{1}{8.9}-\frac{1}{7.8}-\frac{1}{6.7}-\frac{1}{5.6}-\frac{1}{4.5}-\frac{1}{3.4}-\frac{1}{2.3}-\frac{1}{1.2}\)
\(=\frac{9}{10.11}-\frac{10-9}{9.10}-\frac{9-8}{8.9}-...-\frac{2-1}{1.2}\)
\(=\frac{9}{10.11}-\frac{10}{9.10}+\frac{9}{9.10}-...-\frac{2}{1.2}+\frac{1}{1.2}\)
\(=\frac{9}{10.11}-\frac{1}{9}+\frac{1}{10}-\frac{1}{8}+\frac{1}{9}-\frac{1}{7}+\frac{1}{8}-...-\frac{1}{2}+\frac{1}{3}-1+\frac{1}{2}\)
\(=\frac{9}{10.11}+\frac{1}{10}-1\)
\(=-\frac{9}{11}\)
a.1/6+1/12+1/20+1/30+1/42+............+1/90+1/110
b.2/11*13+2/13*15+2/15*17+..........+2/97*99+2/99*101
c.1/11*16+1/16*21+1/21*26+.................+1/56*61+1/61*66
1/6+1/12+1/20+1/30+1/42+.....+1/90+1/110
1/11*16+1/16*21+1/21*26+.....+1/56*61+1/61*66
mik cũng đang ko biết bài này nè
A = 1/6 + 1/12 + 1/20 + 1/30 + 1/42 + 1/56 + 1/72 + 1/90 + 1/110=?
\(A=\frac{1}{6}+\frac{1}{12}+...+\frac{1}{110}=\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{10\cdot11}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}=\left(\frac{1}{2}-\frac{1}{11}\right)+\left(\frac{1}{3}-\frac{1}{3}\right)+...+\left(\frac{1}{10}-\frac{1}{10}\right)\)\(=\left(\frac{1}{2}-\frac{1}{11}\right)+0+...+0=\frac{11}{22}-\frac{2}{22}=\frac{9}{22}\)
=1/2.3+1/3.4+1/4.5+1/5.6+1/6.7+1/7.8+1/8.9+1/9.10+1/10.11 =1-10/11=9/22 ;minh lanm dung nhe ;nho **** cho minh nhe
A = 1/6 + 1/12 + 1/20 + 1/30 + 1/42 + 1/56 + 1/72 + 1/90 + 1/110=?
\(A=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}\)
\(=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}\)
\(=\frac{1}{2}-\frac{1}{11}\)
\(=\frac{9}{22}\)
\(A=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}\)
\(A=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}\)
\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}\)
\(A=\left(\frac{1}{2}-\frac{1}{11}\right)+0+...+0\)
\(A=\frac{11}{22}-\frac{2}{22}\)
\(A=\frac{9}{22}\)
\(\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}+\dfrac{1}{110}\)
\(=\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+\dfrac{1}{9.10}+\dfrac{1}{10.11}\)
\(=\dfrac{1}{2}-\dfrac{1}{11}\)
\(=\dfrac{9}{22}\)
Tính tổng:
a)A=1/20+1/30+1/42+1/56+1/72+1/90+1/110
b)B=1/2+1/4+1/6+1/8+...+1/512+1/1014
a)A=1/20+1/30+1/42+1/56+1/72+1/90+1/110
= 1/4*5 + 1/5*6 + 1/6*7 + ... + 1/10*11
= 1/4 - 1/5 + 1/5 - 1/6 + 1/6 - 1/7 + ... + 1/10 - 1/11
= 1/4 - 1/11
= 7/44
b)B=1/2+1/4+1/6+1/8+...+1/512+1/1024
B = 1/2^1 + 1/2^2 + 1/2^3 + ... + 1/2^9 + 1/2^10
2B = 1 + 1/2 + 1/2^2 + ... + 1/2^10 + 1/2^11
2B - B = B = 1 + 1/2^11
a) Ta có: \(A=\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}\)
\(\Leftrightarrow A=\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}\)
\(\Leftrightarrow A=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}\)
\(\Leftrightarrow A=\frac{1}{4}-\frac{1}{11}\)
\(\Leftrightarrow A=\frac{11-4}{44}\)
\(\Leftrightarrow A=\frac{7}{44}\)