Nếu a 3 / 3 > a 2 / 2 và log b 3 / 4 < log b 4 / 5 thì:
A. 0 < a < 1, b > 1 B. 0 < a < 1, 0 < b < 1
C. a > 1, b > 1 D. a > 1, 0 < b < 1
Nếu a=b+c thì: (a^3+b^3)/(a^3+c^3)=(a+b)/(a+c)
Ô tô đi với vận tốc 50km/giờ vì :
100 : 2 = 50
đs : 50
Nín con mẹ m lại đi mà cái giống gì cũng 50
C/m rằng
a) Nếu a+b+c = 0 thì a3+b3+c3 =3abc
b) Nếu a3+b3+c3 = 3abc thì a+b+c = 0 hoặc a=b=c
a/ \(a+b+c=0\)
\(\Leftrightarrow\left(a+b+c\right)^3=0\)
\(\Leftrightarrow\left[\left(a+b\right)+c\right]^3=0\)
\(\Leftrightarrow\left(a+b\right)^3+3\left(a+b\right)^2c+3\left(a+b\right)c^2+c^3=0\)
\(\Leftrightarrow a^3+b^3+c^3+3a^2b+3ab^2+3bc^2+3b^2c+3a^2c+3ac^2+6abc=0\)
\(\Leftrightarrow a^3+b^3+c^3+\left(3a^2b+3ab^2+3abc\right)+\left(3bc^2+3b^2c+3abc\right)+\left(3ac^2+3a^2c+3abc\right)-3abc=0\)
\(\Leftrightarrow a^3+b^3+c^3+3abc\left(a+b+c\right)+3bc\left(a+b+c\right)+3ac\left(a+b+c\right)-3abc=0\)
Mà \(a+b+c=0\)
\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow a^3+b^3+c^3=3abc\left(đpcm\right)\)
b/ \(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)
\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\a^2+b^2+c^2-ab-bc-ac=0\end{matrix}\right.\)
+) Nếu : \(a^2+b^2+c^2-ab-bc-ac=0\)
\(\Leftrightarrow2\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\) \(\Leftrightarrow a=b=c\)
Vậy \(a^3+b^3+c^3=3abc\) \(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\a=b=c\end{matrix}\right.\)
CM : a) Nếu a+b +c = 0 thì \(a^3+b^3+c^3=3abc\)
b) Nếu a+b +c +d = 0 thì \(a^3+b^3+c^3+d^3=3\left(c+d\right)\left(ab-cd\right)\:\)
a ) \(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)
Nếu : \(a+b+c=0\) thì đẳng thức trên đúng .
\(\Rightarrowđpcm\)
b ) \(a+b+c+d=0\)
\(\Rightarrow a+b=-\left(c+d\right)\Leftrightarrow\left(a+b\right)^3=-\left(c+d\right)^3\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=-3ab\left(a+b\right)-3cd\left(c+d\right)\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=3ab\left(c+d\right)-3cd\left(c+d\right)\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=3\left(c+d\right)\left(cb-cd\right)\left(đpcm\right)\)
Chúc bạn học tốt !!!
a ) a^3+b^3+c^3=3abca3+b3+c3=3abc
\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0⇔(a+b)3+c3−3ab(a+b)−3abc=0
\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0⇔(a+b+c)(a2+b2+c2−ab−bc−ac)=0
Nếu : a+b+c=0a+b+c=0 thì đẳng thức trên đúng .(đpcm)
b ) a+b+c+d=0a+b+c+d=0
\Rightarrow a+b=-\left(c+d\right)\Leftrightarrow\left(a+b\right)^3=-\left(c+d\right)^3⇒a+b=−(c+d)⇔(a+b)3=−(c+d)3
\Leftrightarrow a^3+b^3+c^3+d^3=-3ab\left(a+b\right)-3cd\left(c+d\right)⇔a3+b3+c3+d3=−3ab(a+b)−3cd(c+d)
\Leftrightarrow a^3+b^3+c^3+d^3=3ab\left(c+d\right)-3cd\left(c+d\right)⇔a3+b3+c3+d3=3ab(c+d)−3cd(c+d)
\Leftrightarrow a^3+b^3+c^3+d^3=3\left(c+d\right)\left(cb-cd\right)\left(đpcm\right)⇔a3+b3+c3+d3=3(c+d)(cb−cd)(đpcm)
Gạch dưới số mà bạn chọn :
a) Nếu a : 3 và b : 3 thì tổng a + b chia hết cho 6 ; 9 ; 3
b) Nếu a : 2 và b : 4 thì tổng a + b chia hết cho 4 ; 2 ; 6
c) Nếu a : 6 và b : 9 thì tông a + b chia hết cho 6 ; 3 ; 9
a) Nếu a : 3 và b : 3 thì tổng a + b chia hết cho 3
b) Nếu a : 2 và b : 4 thì tổng a + b chia hết cho 2
c) Nếu a : 6 và b : 9 thì tông a + b chia hết cho 3
;llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll
Gạch dưới số mà bạn chọn :
a) Nếu a : 3 và b : 3 thì tổng a + b chia hết cho 3
b) Nếu a : 2 và b : 4 thì tổng a + b chia hết cho 2
c) Nếu a : 6 và b : 9 thì tông a + b chia hết cho 3
1. Cho phân số a/b, b>a. C/m :
a) Nếu a/b < 1 thì a+1/b+1 > a/b
b) Nếu a/b > 1 thì a/b > a+1/b+1
2. Tính :
3/4 + 3/12 + 3/24 + 3/40 + 3/60 + 3/84 + 3/112 + 3/144 + 1/180
1. Cho phân số a/b, b>a. C/m :
a) Nếu a/b < 1 thì a+1/b+1 > a/b
b) Nếu a/b > 1 thì a/b > a+1/b+1
2. Tính :
3/4 + 3/12 + 3/24 + 3/40 + 3/60 + 3/84 + 3/112 + 3/144 + 1/180
Toán lớp 6
Nếu x chia hết cho 3 thì A chia hết cho 3 . Nếu x không chia hết cho 3 thi A không chia hết cho 3
Số học sinh nam là:
35×2/5=14 ( học sinh )
Số học sinh nữ là:
35-14=21 ( học sinh )
Đáp số :21 học sinh
nếu a + b = 3, a^2 + b^2 = 7 thì a^3 + b^3 = ..........
\(a+b=3\)
\(\Rightarrow\left(a+b\right)^2=9\)
\(\Rightarrow a^2+2ab+b^2=9\)
\(\Rightarrow7+2ab=9\)
\(\Rightarrow2ab=2\Rightarrow ab=1\)
\(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)=3.\left(7-1\right)=18\)
Cm:a) nếu a+b+c=0 thì \(a^3+b^3+c^3=3abc\)
b) Nếu a+b+c+d=0 thì \(a^3+b^3+c^3+d^3=3\left(c+d\right)\left(ab-cd\right)\)
\(a.a^3+b^3+c^3=3abc\)
\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)
Nếu : \(a+b+c=0\) thì đẳng thức trên đúng .
\(\Rightarrowđpcm\)
\(b.a+b+c+d=0\Rightarrow a+b=-\left(c+d\right)\Leftrightarrow\left(a+b\right)^3=-\left(c+d\right)^3\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=-3ab\left(a+b\right)-3cd\left(c+d\right)\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=3ab\left(c+d\right)-3cd\left(c+d\right)\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=3\left(c+d\right)\left(ab-cd\right)\left(đpcm\right)\)
Cho tích a.b.c. Nếu thêm b vào a thì tích tăng thêm A. Nếu thêm C vào b thì tích tăng thêm B. Nếu thêm a vào c thì tích tăng thêm B . Biết a3.b3.c3. Tìm a ,b , c