Đưa các phương trình sau về dạng a x 2 + bx + c = 0 và xác định các hệ số a, b, c: 5x - 3 + 5 . x 2 = 3x - 4 + x 2
Đưa các phương trình sau về dạng a x 2 + bx + c = 0 và xác định các hệ số a, b, c: 4 x 2 + 2x = 5x - 7
4 x 2 + 2x = 5x - 7 ⇔ 4 x 2 - 3x + 7 = 0 có a = 4, b = -3, c = 7
Đưa các phương trình sau về dạng a x 2 + bx + c = 0 và xác định các hệ số a, b, c: x + m 2 x 2 + m = x 2 + mx + m + 2
Đưa các phương trình sau về dạng a x 2 + bx + c = 0 và xác định các hệ số a, b, c: m x 2 - 3x + 5 = x 2 - mx
m x 2 - 3x + 5 = x 2 - mx ⇔ ⇔ (m - 1) x 2 - (3 - m)x + 5 = 0
m - 1 ≠ 0
nó là phương trình bậc hai có a = m – 1; b = - (3 – m ); c = 5
Đưa các phương trình sau về dạng ax2 + bx + c = 0 và chỉ rõ các hệ số a, b, c:
2 x 2 + x - 3 = x . 3 + 1
2x2 + x - √3 = x.√3 + 1
⇔ 2x2 + x - x.√3 - √3 – 1 = 0
⇔ 2x2 + x.(1 - √3) – (√3 + 1) = 0
Phương trình bậc hai trên có a = 2; b = 1 - √3; c = - (√3 + 1).
Đưa các phương trình sau về dạng \(ax^2+bx+c=0\) và xác định các hệ số a, b, c :
a) \(4x^2+2x=5x-7\)
b) \(5x-3+\sqrt{5}x^2=3x-4+x^2\)
c) \(mx^2-3x+5=x^2-mx\)
d) \(x+m^2x^2+m=x^2+mx+m+2\)
a: \(\Leftrightarrow4x^2-3x+7=0\)
a=4; b=-3; c=7
b: \(\Leftrightarrow\sqrt{5}x^2-x^2+5x-3-3x+4=0\)
\(\Leftrightarrow x^2\cdot\left(\sqrt{5}-1\right)+2x+1=0\)
\(a=\sqrt{5}-1;b=2;c=1\)
c: \(\Leftrightarrow mx^2-x^2-3x+mx+5=0\)
\(\Leftrightarrow x^2\left(m-1\right)+x\left(m-3\right)+5=0\)
a=m-1; b=m-3; c=5
d: \(\Leftrightarrow m^2x^2-x^2+x+m-mx-m-2=0\)
\(\Leftrightarrow x^2\left(m^2-1\right)+x\left(1-m\right)-2=0\)
\(a=m^2-1;b=1-m;c=-2\)
Đưa các phương trình sau về dạng ax2 + bx + c = 0 và chỉ rõ các hệ số a, b, c:
5 x 2 + x = 4 - x
5x2 + 2x = 4 – x
⇔ 5x2 + 2x + x – 4 = 0
⇔ 5x2 + 3x – 4 = 0
Phương trình bậc hai trên có a = 5; b = 3; c = -4.
Đưa các phương trình sau về dạng ax2 + bx + c = 0 và chỉ rõ các hệ số a, b, c:
2 x 2 + m 2 = 2 m - 1 . x m là hằng số
2x2 + m2 = 2(m – 1).x
⇔ 2x2 – 2(m – 1).x + m2 = 0
Phương trình bậc hai trên có a = 2; b = -2(m – 1); c = m2.
Đưa các phương trình sau về dạng a x 2 + b x + c = 0 và chỉ rõ các hệ số a, b, c:
a ) 5 x 2 + 2 x = 4 − x b ) 3 5 x 2 + 2 x − 7 = 3 x + 1 2 c ) 2 x 2 + x − 3 = x ⋅ 3 + 1 d ) 2 x 2 + m 2 = 2 ( m − 1 ) ⋅ x
a ) 5 x 2 + 2 x = 4 − x ⇔ 5 x 2 + 2 x + x − 4 = 0 ⇔ 5 x 2 + 3 x − 4 = 0
Phương trình bậc hai trên có a = 5; b = 3; c = -4.
b)
3 5 x 2 + 2 x − 7 = 3 x + 1 2 ⇔ 3 5 x 2 + 2 x − 3 x − 7 − 1 2 = 0 ⇔ 3 5 x 2 − x − 15 2 = 0
c)
2 x 2 + x − 3 = x ⋅ 3 + 1 ⇔ 2 x 2 + x − x ⋅ 3 − 3 − 1 = 0 ⇔ 2 x 2 + x ⋅ ( 1 − 3 ) − ( 3 + 1 ) = 0
Phương trình bậc hai trên có a = 2; b = 1 - √3; c = - (√3 + 1).
d)
2 x 2 + m 2 = 2 ( m − 1 ) ⋅ x ⇔ 2 x 2 − 2 ( m − 1 ) ⋅ x + m 2 = 0
Phương trình bậc hai trên có a = 2; b = -2(m – 1); c = m 2
Kiến thức áp dụng
Phương trình bậc hai một ẩn là phương trình có dạng: ax2 + bx + c = 0
trong đó x được gọi là ẩn; a, b, c là các hệ số và a ≠ 0.
Đưa các phương trình sau về dạng ax2 + bx + c = 0 và chỉ rõ các hệ số a, b, c:
a) 5x^2 + 2x = 4 – x; b) x2 + 2x – 7 = 3x + 1/2
c) 2x^2 + x - √3 = √3x + 1;
d) 2x^2 + m^2 = 2(m – 1)x, m là một hằng số.
Bài giải:
a) 5x2 + 2x = 4 – x ⇔ 5x2 + 3x – 4 = 0; a = 5, b = 3, c = -4
b) x2 + 2x – 7 = 3x + ⇔ x2 – x - = 0, a = , b = -1, c = -
c) 2x2 + x - √3 = √3 . x + 1 ⇔ 2x2 + (1 - √3)x – 1 - √3 = 0
Với a = 2, b = 1 - √3, c = -1 - √3
d) 2x2 + m2 = 2(m – 1)x ⇔ 2x2 - 2(m – 1)x + m2 = 0; a = 2, b = - 2(m – 1), c = m2