rút gọn phân số
a, \(\frac{25^{28}+25^{24}+...+25^4+1}{25^{30}+25^{28}+...+25^2+1}\)
Rút gọn phân số sau: \(\frac{25^{28}+25^{24}+...+25^4+1}{25^{30}+25^{28}+..+25^2+1}\)
Đặt phân số trên là A
\(A=\frac{25^{28}+25^{24}+...+25^4+25^0}{\left(25^{28}+25^{24}+...+25^4+25^0\right)+\left(25^{30}+25^{26}+...+25^6+25^2\right)}\)
\(\frac{1}{A}=\frac{\left(25^{28}+25^{24}+...+25^4+25^0\right)+\left(25^{30}+25^{26}+...+25^6+25^2\right)}{25^{28}+25^{24}+...+25^4+25^0}\)
\(\frac{1}{A}=1+\frac{25^{30}+25^{26}+...+25^6+25^2}{25^{28}+25^{24}+...+25^4+25^0}\)
Đặt \(B=\frac{25^{30}+25^{26}+...+25^6+25^2}{25^{28}+25^{24}+...+25^4+25^0}\)
\(\frac{B}{25^2}=\frac{25^{30}+25^{26}+...+25^6+25^2}{25^{30}+25^{26}+...+25^6+25^2}=1\Rightarrow B=25^2\)
=> \(\frac{1}{A}=1+B=1+25^2\Rightarrow A=\frac{1}{1+25^2}\)
Rút gọn phân số A = \(\dfrac{25^{28}+25^{24}+25^{20}+...+25^4+1}{25^{30}+25^{28}+....+25^2+1}\)
Lời giải:
Xét tử số:
$\text{TS}=1+25^4+25^8+...+25^{28}$
$25^4.\text{TS}=25^4+25^8+...+25^{32}$
$\Rightarrow \text{TS}(25^4-1)=25^{32}-1$
$\text{TS}=\frac{25^{32}-1}{25^4-1}$
Xét mẫu số:
$\text{MS}=1+25^2+..+25^{30}$
$25^2.\text{MS}=25^2+25^4+...+25^{32}$
$\Rightarrow \text{MS}(25^2-1)=25^{32}-1$
$\Rightarrow \text{MS}=\frac{25^{32}-1}{25^2-1}$
Do đó:
$A=\frac{25^{32}-1}{25^4-1}:\frac{25^{32}-1}{25^2-1}=\frac{25^2-1}{25^4-1}$
$=\frac{25^2-1}{(25^2-1)(25^2+1)}=\frac{1}{25^2+1}$
1.rút gọn phân số
\(\frac{25^{28}+25^{24}+25^{20}+...+25^4+1}{25^{30}+25^{28}+25^{26}+...25^2+1}\)
Rút gọn phân số : \(A=\frac{25^{28}+25^{24}+25^{20}+....+25^4+1}{25^{30}+25^{28}+25^{26}+....+25^2+1}\)
\(A=\frac{25^{28}+25^{24}+25^{20}+...+25^4+1}{25^{30}+25^{28}+25^{26}+...+25^2+1}=25^{30}+25^{26}+25^{22}+25^{18}+25^{14}+25^{10}+25^6+25^2\)
Rút gọn \(\frac{25^{28}+25^{24}+25^{20}+...+25^4+1}{25^{30}+25^{28}+25^{26}+...+25^4+25^2+1}\)
a)Rút gọn phân số : \(\dfrac{25^{28}+25^{24}+25^{20}+.....+25^4+1}{25^{30}+25^{28}+....+25^2+1}\)
b) Cho S = 1-3 + 32-33+.....+398-399
a) Ta có: \(\dfrac{25^{28}+25^{24}+25^{20}+...+25^4+1}{25^{30}+25^{28}+...+25^2+1}\)
\(=\dfrac{25^{24}\left(25^4+1\right)+25^{16}\left(25^4+1\right)+...+\left(25^4+1\right)}{25^{28}\left(25^2+1\right)+25^{24}\left(25^2+1\right)+...+\left(25^2+1\right)}\)
\(=\dfrac{\left(25^4+1\right)\left(25^{24}+25^{16}+25^8+1\right)}{\left(25^2+1\right)\left(25^{28}+25^{24}+...+1\right)}\)
\(=\dfrac{\left(25^4+1\right)\cdot\left[25^{16}\left(25^8+1\right)+\left(25^8+1\right)\right]}{\left(25^2+1\right)\left[25^{24}\left(25^4+1\right)+25^{16}\left(25^4+1\right)+25^8\left(25^4+1\right)+\left(25^4+1\right)\right]}\)
\(=\dfrac{\left(25^4+1\right)\left(25^8+1\right)\left(25^{16}+1\right)}{\left(25^2+1\right)\left(25^4+1\right)\left(25^{24}+25^{16}+25^8+1\right)}\)
\(=\dfrac{\left(25^8+1\right)\left(25^{16}+1\right)}{\left(25^2+1\right)\left[25^{16}\left(25^8+1\right)+\left(25^8+1\right)\right]}\)
\(=\dfrac{\left(25^8+1\right)\left(25^{16}+1\right)}{\left(25^2+1\right)\left(25^8+1\right)\left(25^{16}+1\right)}\)
\(=\dfrac{1}{25^2+1}=\dfrac{1}{626}\)
Rút gọn phân số sau
25 mũ 28 + 25 mũ 24 +...+25 mũ 4 + 1
25 mũ 30 + 25 mũ 28 + ...+ 25 mũ 2 + 1
Bài 1: Tính tổng: \(S=\frac{3}{2\cdot3}+\frac{3}{3\cdot6}+\frac{3}{4\cdot9}+...+\frac{3}{6039\cdot2014}\)
Bài 2: Rút gọn phân số: \(S=\frac{25^{28}+25^{24}+...+25^4+1}{25^{30}+25^{28}+...+25^2+1}\)
Rút gọn A=\(\frac{25^{28}+25^{24}+...+25^4+25^0}{25^{30}+25^{28}+...+25^2+25^0}\)
\(A=\frac{25^{28}+25^{24}+...+25^4+25^0}{25^{30}+25^{28}+...+25^2+25^0}\)
\(=\frac{25^{28}+25^{24}+...+25^0}{\left(25^{28}+25^{24}+...+25^0\right)+\left(25^{30}+23^{26}+...+25^2\right)}\)
\(=\frac{25^{28}+25^{24}+...+25^0}{\left(25^{28}+25^{24}+...+25^0\right)+25^2\left(25^{28}+23^{24}+...+25^0\right)}\)
\(=\frac{25^{28}+25^{24}+...+25^0}{\left(25^{28}+25^{24}+...+25^0\right)\left(1+25^2\right)}\)
\(=\frac{1}{1+25^2}\)
\(=\frac{1}{626}\)