Tập hợp tất cả các điểm biểu diễn số phức z thỏa mãn 2 z − i = 6 là một đường tròn có bán kính bằng:
A. 3
B. 6 2
C. 6
D. 3 2
Xét các số phức z thỏa mãn ( z ¯ +i)(z+2) là số thuần ảo. Trên mặt phẳng tọa độ, tập hợp tất cả
các điểm biểu diễn các số phức z là một đường tròn có bán kính bằng
A. 1
B. 5 4
C. 5 2
D. 3 2
Cho số phức z thỏa mãn điều kiện |z|=3 Biết rằng tập hợp tất cả các điểm biểu diễn số phức w = 3 - 2 i + ( 2 - i ) z là một đường tròn. Bán kính của đường tròn đó là
A. R = 3 2
B. R = 3 5
C. R = 3 3
D. R = 3 7
Tập hợp tất cả các điểm biểu diễn các số phức z thỏa mãn | z ¯ +2-i| là đường tròn có tâm I và bán kính R lần lượt là
A. I(-2;-1), R = 4
B. I(-2;-1), R = 2
C. I(2;-1), R = 4
D. I(2;-1), R = 2
Tập hợp tất cả các điểm biểu diễn các số phức z thỏa mãn: z ¯ + 2 − i = 4 là đường tròn có tâm I và bán kính R lần lượt là:
A. I(2;-1), R = 4
B. I(2;-1), R = 2
C. I(-2;-1), R = 4
D. I(-2;-1), R = 2
Xét các điểm số phức z thỏa mãn z ¯ + i z + 2 là số thuần ảo. Trên mặt phẳng tọa độ, tập hợp tất cả các điểm biểu diễn số phức z là một đường tròn có bán kính bằng:
A. 1.
B. 5 4
C. 5 2
D. 3 2
Xét các số phức z thỏa mãn ( z + 2 i ) ( z ¯ + 2 ) là số thuần ảo. Biết rằng tập hợp tất cả các điểm biểu diễn của z là một đường tròn, tâm của đường tròn đó có tọa độ là
Xét các số phức z thỏa mãn z ¯ - 2 i z + 2 là số thuần ảo. Trên mặt phẳng tọa độ, tập hợp tất cả các điểm biểu diễn các số phức z là một đường tròn có bán kính bằng?
A. 2 2
B. 2
C. 2
D. 4
Vậy tập hợp tất cả các điểm biễu diễn số phức z là một đường tròn có bán kính bằng 2 . Chọn B.
Xét các số phức z thỏa mãn z + 2 i z ¯ + 2 là số thuần ảo. Biết rằng tập hợp tất cả các điểm biểu diễn của z là một đường tròn, tâm của đường tròn đó có tọa độ là
A. (1;-1)
B. (1;1)
C. (-1;1)
D. (-1;-1)
Xét các số phức z thỏa mãn z + 2 i z ¯ + 2 là số thuần ảo. Biết rằng tập hợp tất cả các điểm biểu diễn của z là một đường tròn, tâm của đường tròn đó có tọa độ là
A. (1; -1)
B. (1;1)
C. (-1;1)
D. (-1; -1).