Trên tập hợp số phức cho phương trình z 2 + b z + c = 0 với b , c ∈ R . Biết rằng hai nghiệm của phương trình có dạng w + 3 và 3 w − 8 i + 13 với w là số phức. Tính S = b 2 − c 3 .
A. S = -496.
B. S = 0.
C. S = -26.
D. S = 8.
Cho số phức z có tập hợp điểm biểu diễn trên mặt phẳng phức là đường tròn có phương trình x 2 + y 2 - 25 = 0 . Tính môđun của số phức z?
Cho phương trình trên tập họp số phức z 2 + a x + b = 0 . Nếu phương trình nhận số phức z = 1 + i làm một nghiệm thì a và b bằng.
A. a = -2, b = 2
B. a = 1, b = 5
C. a = 2, b = -2
D. a = 2, b = -4
Trên tập số phức, cho phương trình sau : ( z + i)4 + 4z2 = 0. Có bao nhiêu nhận xét đúng trong số các nhận xét sau?
1. Phương trình vô nghiệm trên trường số thực R.
2. Phương trình vô nghiệm trên trường số phức C
3. Phương trình không có nghiệm thuộc tập số thực.
4. Phương trình có bốn nghiệm thuộc tập số phức.
5. Phương trình chỉ có hai nghiệm là số phức.
6. Phương trình có hai nghiệm là số thực
A. 0.
B. 1.
C. 3.
D. 2.
Chọn D.
Do đó phương trình có 2 nghiệm thực và 4 nghiệm phức. Vậy nhận xét 4, 6 đúng.
Trên tập hợp số phức, cho phương trình z 2 + bz + c = 0 với b,c ∈ ℚ Biết rằng hai nghiệm của phương trình có dạng w + 3 và 2w – 6i +1 với w là một số phức. Tính S = b 3 - c 2 .
A. S = -1841.
B. S = -3.
C. S = 7.
D. S = 2161.
Cho số phức thỏa mãn z - i = z - 1 + 2 i . Tập hợp điểm biểu diễn số phức w = (2 - i) z +1 trên mặt phẳng phức là một đường thẳng. Phương trình của đường thẳng đó là
Xét các số phức z=x+yi x , y ∈ R có tập hợp điểm biểu diễn trên mặt phẳng tọa độ là đường tròn có phương trình (C): x - 1 2 + y - 2 2 = 4 . Tập hợp các điểm biểu diễn của số phức là w = z + z ¯ + 2 i
Xét các số phức z = x + y i x , y ∈ ℝ có tập hợp điểm biểu diễn trên mặt phẳng tọa độ là đường tròn có phương trình C : x - 1 2 + y - 2 2 = 4 . Tập hợp các điểm biểu diễn của số phức là w = z + z ¯ + 2 i
A. Đường thẳng
B. Đoạn thẳng.
C. Điểm
D. Đường tròn.
Xét các số phức z = x + y i x , y ∈ ℝ có tập hợp điểm biểu diễn trên mặt phẳng tọa độ là đường tròn có phương trình ( C ) : x - 1 2 + y - 2 2 = 4 . Tập hợp các điểm biểu diễn của số phức là w = z + z ¯ + 2 i
A. Đường thẳng
B. Đoạn thẳng
C. Điểm
D. Đường tròn
Số phức z = x + y i x , y ∈ ℝ có tập hợp điểm biểu diễn trên mặt phẳng tọa độ là đường tròn có phương trình
( C ) : x - 1 2 + y - 2 2 = 4 ⇒ - 1 ≤ x ≤ 3
w = z + z ¯ + 2 i = x + y i + x - y i + 2 i = 2 x + 2 i
Tọa độ điểm biểu diễn số phức w là M ( x ; 2 ) , x ∈ - 1 ; 3
Vậy, tập hợp các điểm biểu diễn của số phức là w là đoạn thẳng AB với A(-1;2),B(3;2)
Chọn đáp án B.
Trên mặt phẳng phức tập hợp các số phức z = x + yi thỏa mãn |z + 2 - i| = | z ¯ - 3i| là đường thẳng có phương trình
A. y = x + 1
B. y = -x + 1
C. y = -x - 1
D. y = x - 1