Cho hàm số f x có đạo hàm và liên tục trên đoạn 4 ; 8 và f x ≠ 0 ∀ x ∈ 4 ; 8 . Biết rằng ∫ 4 8 f ' x 2 f x 4 d x = 1 và f 4 = 1 4 , f 8 = 1 2 . Tính f 6 .
A. 5 8 .
B. 2 3 .
C. 3 8 .
D. 1 3 .
Cho các mệnh đề :
1) Hàm số y=f(x) có đạo hàm tại điểm x 0 thì nó liến tục tại x 0 .
2) Hàm số y=f(x) liên tục tại x 0 thì nó có đạo hàm tại điểm x 0 .
3) Hàm số y=f(x) liên tục trên đoạn [a;b] và f(a).f(b)<0 thì phương trình f(x) có ít nhất một nghiệm trên khoảng (a;b).
4) Hàm số y=f(x) xác định trên đoạn [a;b] thì luôn tồn tại giá trị lớn nhất và giá trị nhỏ nhất trên đoạn đó.
Số mệnh đề đúng là:
A. 2
B. 4
C. 3
D. 1
Cho hàm số f(x) có đạo hàm liên tục trên đoạn [a;b] và f (a)= - 2 ; f (b) = - 4 Tính T = ∫ a b f ' x dx
A. T= -6
B. T =2
C. T= 6
D. T= -2
Cho hàm số f(x) có đạo hàm liên tục trên đoạn [a;b] và f(a) = –2, f(b) = –4. Tính T = ∫ a b f ' x d x .
A. T = –6.
B. T = 2.
C. T = 6.
D. T = –2.
Cho hàm số f(x) có đạo hàm liên tục trên đoạn [a;b] và f(a)=-2, f(b)=-4. Tính T = ∫ a b f ' ( x ) d x
Cho hàm số y = f(x) có đạo hàm liên tục trên đoạn [–1;1] thỏa mãn ∫ - 1 1 f ' ( x ) d x = 5 và f(–1) = 4. Tìm f(1).
A. f(1) = –1.
B. f(1) = 1.
C. f(1) = 9.
D. f(1) = –9
Cho hàm số y = f(x) có đạo hàm f’(x) liên tục trên đoạn [1; 4], f(1) = 12 và ∫ 1 4 f ' ( x ) d x = 17 .Giá trị của f(4) bằng
A. 29
B. 5
C. 19
D. 9
Chọn A.
Ta có ∫ 1 4 f ' ( x ) d x = f ( 4 ) - f ( 1 ) ⇒ f ( 4 ) = f ( 1 ) + 17 = 29
Cho hàm số y=f(x) có đạo hàm f'(x) liên tục trên đoạn [1;4], f(1)=12 và ∫ 1 4 f ' ( x ) d x = 17 . Giá trị của f(4) bằng:
A. 29
B. 5
C. 19
D. 9
Cho hàm số y = f(x) có đạo hàm f ' x liên tục trên đoạn 1 ; 4 , f 1 = 12 và ∫ 1 4 f ' x d x = 17 . Gía trị của f(4) bằng
A. 29
B. 5
C. 19
D. 9
Cho hàm số y = f(x) liên tục trên [a;b]. Giả sử hàm số u = u(x) có đạo hàm liên tục trên [a;b] và u ( x ) ∈ [ α ; β ] ∀ x ∈ [ a ; b ] hơn nữa f(u) liên tục trên đoạn [a;b]. Mệnh đề nào sau đây là đúng?
A. ∫ a b f ( u ( x ) ) u ' d x = ∫ u ( a ) u ( b ) f ( u ) d u
B. ∫ a b f ( u ( x ) ) u ' d x = ∫ a b f ( u ) d u
C. ∫ u ( a ) u ( b ) f ( u ( x ) ) u ' d x = ∫ a b f ( u ) d u
D. ∫ a b f ( u ( x ) ) u ' d x = ∫ a b f ( x ) d x
Phương pháp: Sử dụng phương pháp đổi biến, đặt t = u(x)
Cách giải:
Đặt
Đổi cận
Cho hàm số f(x) có đạo hàm liên tục trên đoạn [-1; 3] và thỏa mãn f(-1) = 4; f(3) = 7. Giá trị của I = ∫ - 1 3 5 f ' t d t bằng
A. I = 20.
B. I = 3.
C. I = 10.
D. I = 15.