Cho x , y là hai số nguyên biết 3x + 10 chia hết cho 23 chứng minh rằng x + 11y chia hết cho 23
cho x,ythuoc so nguyên biết 3x+10 chia hết cho 23 , chứng minh rằng x+11y chia hết cho 23
Cho x,y là số nguyên thỏa mãn 3x-5y chia hết cho 23. Chứng minh rằng 5x-16y cũng thỏa mãn chia hết cho 23 ?
xét hiệu A=5(3x-5y)-3(5x-16y)=23y
=> A chia hết cho 23,mà 3x-5y chia hết cho 23=>3(5x-16y) chia hết cho 23
Mà (3;23)=1=>5x-16y chia hết cho 23(đpcm)
Bài 1,Cho x,y là các số nguyên tố thỏa mãn 3x-5y chia hết cho 23. Chứng minh rằng 5x-16y cũng chia hết cho 23.
ai nhanh mình tick
chứng minh rằng 6x+11y chia hết cho 31 x,y là số nguyên thì x+7y cũng chia hết cho 31
Ta có:6x+11y chia hết cho 31
x+7y chia hết cho 31
=>6x+11y chia hết cho 31
6x+42y chia hết cho 31
hay (6x+42y)-(6x+11y) chia hết cho 31
31y chia hết cho 31
Vậy 6x+11y chia hết cho 31 x,y là số nguyên thì x+7y cũng chia hết cho 31(dpcm).
TICK VA KB VS MK NHA!
Cho x,y là số nguyên, chứng minh rằng 6x + 11y chia hết cho 31 khi và chỉ khi x + 7y chia hết cho 31
Ta có 31(x + 2y) chia hết cho 31
Ta có 31(x + 2y) = 31x + 2y = 5(6x + 11y) + (x + 7y)
Nếu (6x + 11y) chia hết cho 31 \(\Rightarrow\) 5(6x + 11)y chia hết cho 31 \(\Rightarrow\) x + 7y phải chia hết cho 31
1.Cho x,y là số nguyên dương thỏa mãn:
1003x+2y=2008
a/Chứng tỏ rằng x chia hết cho 2
b/Tìm x,y
2.Chứng minh rằng:
2^0+2^1+2^2+...+2^5n-3+2^5n-2+2^5n-1 chia hết cho 31 nếu n là 1 số nguyên dương bất kì.
3.Tìm các số nguyên x sao cho:
a/ 3x+23 chia hết cho x+4
b/x^2+3x-3 là B(x-2)
4.Tìm x,y thuộc Z biết:
3x+4y-x.y=15
Giúp mình với nha mình cần gấp ^_^ ahihihihi!
a.Vì x,y là số nguyên dương
=> 1003 và 2y cũng là số nguyên dương
Vì 2008 là số chẵn
mà 2y cũng là số chẵn
=> 1003x là số chẵn
Vì 1003 là số lẻ
mà 1003x là số chẵn
=> x là số chẵn
=> x chia hết cho 2 (đpcm)
Vậy ta có đpcm
Câu hỏi : Chứng minh rằng với mọi số nguyên x,y thì
a) 2.x^2 + 3.y chia hết cho 17 khi và chỉ khi 9.x^2 + 5.y chia hết cho 17
b) 5.x^2 - 4.y chia hết cho 23 khi và chỉ khi 3.x^2 - 7.y chia hết cho 23
tính
S=(1-1\2^2)(1-1\3^2)........(1-1\100^2)
cho x,ylaf các số nguyên thỏa mãn 3x-5y chia hết cho 23 . chứng minh rằng 5x-16y cũng chia hết cho 23
1. \(S=\left(1-\frac{1}{2^2}\right).\left(1-\frac{1}{3^2}\right)...\left(1-\frac{1}{100^2}\right)\)
\(S=\left(1-\frac{1}{4}\right).\left(1-\frac{1}{9}\right)...\left(1-\frac{1}{10000}\right)\)
\(S=\frac{3}{4}.\frac{8}{9}...\frac{9999}{10000}\)
\(S=\frac{1.3}{2.2}.\frac{2.4}{3.3}...\frac{99.101}{100.100}\)
\(S=\frac{1.2...99}{2.3...100}.\frac{3.4...101}{2.3...100}\)
\(S=\frac{1}{100}.\frac{101}{2}\)
\(S=\frac{101}{200}\)
2.
Vì 3x - 5y \(⋮\)23
\(\Rightarrow\)6 . ( 3x - 5y ) \(⋮\)23
Ta có : 6 . ( 3x - 5y ) + ( 5x - 16y )
\(\Leftrightarrow\)( 18x - 30y ) + ( 5x - 16y )
\(\Leftrightarrow\)23x - 46y
\(\Leftrightarrow\)23 . ( x - 2y ) \(⋮\)23
Vì 18x - 30y \(⋮\)23 mà ( 5 ; 23 ) = 1
\(\Rightarrow\)5x - 16y \(⋮\)23
Câu hỏi : Chứng minh rằng với mọi số nguyên x,y thì
a) 2.x^2 + 3.y chia hết cho 17 khi và chỉ khi 9.x^2 + 5.y chia hết cho 17
b) 5.x^2 - 4.y chia hết cho 23 khi và chỉ khi 3.x^2 - 7.y chia hết cho 23
ảnh đẹp đó nhưng hổng có liên quan